Большая энциклопедия нефти и газа. Виды энергетики: традиционная и альтернативная

Традиционная электроэнергетика


Традиционная электроэнергетика уже несколько сотен лет хорошо освоенна и проверенна в различных условиях эксплуатации. Львиную долю электроэнергии в мире производят на традиционных теплоэлектростанциях (ТЭС).


Тепловая энергетика

В тепловой энергетике производство электрической энергии производится на тепловых электростанциях, использующих последовательное преобразоване естественной энергии органического топлива в тепло- и электро- энергию. ТЭС делятся на:

Паротурбинные ;

Газотурбинные ;

Парогазовые .


Теплоэнергетика в мире занимает ведущую роль среди остальных видов. Из нефти производится 39 % всей электроэнергии в мире, на основе угля — 27 %, на основе газа — 24 %.

В Польше и ЮАР энергетика по большей части основана на сгорании угля, а в Голландии — на основе газа. Большая доля теплоэнергетики в таких странах как Китай, Австралия и Мексика.

Основополагающим оборудованием ТЭС являются такие составляющие как котел, турбина и генератор. При сжигании топлива в котле выделяется теплоэнергия, которая преобразуется в водяной пар. Энергия водяного пара в свою очередь поступает в турбину, которая вращаясь, превращается в механическую энергию. Генератор же эту энергию вращения преобразует в электрическую. Теплоэнергия при этом может также использоваться для нужд потребителя.

Теплоэлектростанции имеют как свои плюсы, так и минусы.
Положительные факторы:
- относительно свободное месторасположение, связанное с месторасположением ресурсов топлива;
- способность производить электроэнергию не зависимо от сезонных колебаний.
Отрицательные факторы:
- ТЭС обладает низким КПД, если точнее, то всего около 32% энергии природных ресурсов преобразуется в электрическую;
- топливные ресурсы - ограничены.
- негативное влияние на окружающую среду.

Гидравлическая энергетика


В гидравлической энергетике электроэнергия производится на гидроэлектростанциях (ГЭС), которые преобразуют энергию водного потока в электрическую.

ГЭС производят одну из самых дешевых видов электроэнергии, но имеют довольно-таки большую себестоимость строительства. Именно ГЭС позволили СССР в первые 10-летия своего становления совершить огромный скачок в промышленности.

Главный недостаткок ГЭС - это сезонность их работы, которая очень неудобна для промышленности.

Существует три вида ГЭС:
- Гидроэлектростанции. Cтроительство гидротехнических сооружений позволило преобразовать природные водные ресурсы реки в искуственные гидроэнергетические ресурсы, которые, преобразуясь в турбине, затем превращаются в механическую энергию, которая в свою очередь используется в генераторе, превращаясь в электроэнергию.

Приливные станции. Здесь используется вода морей. Благодаря приливам и отливам уровень морей меняется. При этом волна иногда достигает 13-ти метров. Между этими уровнями создается разница и так создается напор воды. Но приливная волна часто изменяется, в следствии этого меняется как напор, так и мощность станций. Основным недостатком их является вынужденный режим: такие станции дают мощность не тогда, когда это необходимо потребителю, а в зависимости от природных условий, а именно: от приливов и отливов уровня воды. Стоит отметить также большую стоимость сооружения таких станций.

Гидроаккумулирующие электростанции. Построены, используя цикличность перемещения одного и того же количества воды между различными уровнями бассейнов. Когда ночью потребность в электроэнергии незначительна, вода циркулируется из нижнего бассейна в верхний, при этом используя излишки энергии, производимой ночью. В дневное время, когда резко увеличивается потребление электроэнергии, вода сбрасывается из верхнего водохранилища вниз через турбины, при этом преобразуясь в электроэнергию. На основании такого подхода ГАЭС позволяют снижать пиковые нагрузки.

Следует отметить, что ГЭС очень эффективны, так как используют возобновляемые ресурсы и относительно просты в управлении, а их КПД достигает более 80%. Поэтому их электроэнергия самая дешевая. Однако строительство ГЭС долгосрочное и требует вливания больших капиталовложений и, что немаловажно, наносит ущерб фауне водоемов.


Ядерная энергетика

В ядерной энергетике электроэнергия производится на Атомных станциях (АЭС). Такого вида станции используют для выработки энергии цепную ядерную реакцию урана.

Преимущества АЭС перед другими видами электростанций:
- не загрязняют окружающую среду (за исключением форс-мажоров)
- не требуют привязонности к источнику сырья
- размещенаются практически везде.

Недостатки АЭС перед другими видами электростанций:
- опасность АЭС при всевозможных форс-мажорных обстоятельствах: аварий в результате землетрясений, ураганов и т. п.
- старые модели блоков потенциально опасносны радиационным заражением территорий из-за перегрева реактора.
- трудности в захоронении радиоактивных отходов.

По выработке электроэнергии на АЭС лидирующее положение занимает Франция (80%). В США, Бельгии, Японии и Республике Корея также велика их доля.

Нетрадиционная электроэнергетика


Запасы нефти, газа, угля не бесконечны. Чтобы создать эти запасы, природе понадобилось миллионы лет, а истратятся они всего лишь за сотни лет.

Что же произойдет когда месторождения топлива (нефти и газа) закончатся?

Основные источники альтернативной энергии:
- энергия малых рек;
- энергия приливов и отливов;
- энергия Солнца;
- энергия ветра;
- геотермальная энергия;
- энергия горючих отходов и выбросов;
- энергия вторичных или сбросовых источников тепла и другие.


Положительные факторы, влияющие на развитие этих электростанций:
- более низкая стоимость электроэнергии;
- возможность иметь локальные электростанции;
- возобновляемость нетрадиционных источников энергии;
- повышение надежности существующих энергосистем.

Характерными чертами альтернативной энергетики являются:
- экологическая чистота,
- очень большие вложения на их строительство,
- малая единичная мощность.

Основные направления нетрадиционной энергетики:
Малые ГЭС;
Ветроэнергетика;
Геотермальная энергетика;;

Биоэнергетические установки (установки на биотопливе);
Энергетика Солнца;

Установки на топливных элементах

Водородная энергетика;

Термоядерная энергетика.

Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии – электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях: ТЭС, ГЭС, АЭС.

Производство энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетического производства, в котором можно выделитьпять стадий :

1. Получение и концентрация энергетических ресурсов : добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т.д.;

2. Передача энергетических ресурсов к установкам, преобразующим энергию ; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т.д.;

3. Преобразование первичной энергии во вторичную , имеющую наиболее удобную для распределения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию);

4. Передача и распределение преобразованной энергии ;

5. Потребление энергии , осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной форме.

Потребителями энергии являются: промышленность, транспорт, сельское хозяйство, жилищно-коммунальное хозяйство, сфера быта и обслуживания.

Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35–40%, остальная часть теряется, причем большая часть – в виде теплоты.

Основные типы электростанций и их характеристики

Преобразование первичной энергии во вторичную, в частности в электрическую, осуществляется на станциях, которые в своем названии содержат указание на то, какой вид первичной энергии в какой вид вторичной преобразуется на них:

    ТЭС – тепловая электрическая станция преобразует тепловую энергию в электрическую;

    ГЭС – гидроэлектростанция преобразует механическую энергию движения воды в электрическую;

    ГАЭС – гидроаккумулирующая электростанция преобразует механическую энергию движения предварительно накопленной в искусственном водоеме воды в электрическую;

    АЭС – атомная электростанция преобразует атомную энергию ядерного топлива в электрическую;

    ПЭС – приливная электростанция преобразует энергию океанических приливов и отливов в электрическую;

    ВЭС – ветряная электростанция преобразует энергию ветра в электрическую;

    СЭС – солнечная электростанция преобразует энергию солнечного света в электрическую, и т.д.

В Беларуси более 95% энергии вырабатывается на ТЭС. Поэтому рассмотрим процесс преобразования энергии на ТЭС. По назначению ТЭС делятся на два типа:

    КЭС - конденсационные тепловые электростанции, вырабатывающие только электрическую энергию;

    ТЭЦ - теплоэлектроцентрали, на которых осуществляется совместное производство электрической и тепловой энергии.

ТЭС могут работать как на органическом (газ, мазут, уголь), так и на ядерном топливе.

Основное оборудование ТЭС (рис. 2.3) состоит из котла-парогенератора ПГ, турбины Т и генератора Г. В котле при сжигании топлива выделяется тепловая энергия, которая преобразуется в энергию водяного пара. В турбине Т водяной пар превращается в механическую энергию вращения – турбина со скоростью 3000 оборотов в минуту (50 Герц) вращает электрогенератор Г, который превращает энергию вращения в электрическую. Тепловая энергия для нужд потребления может быть взята в виде пара из турбины или котла. На рисунке, кроме основного оборудования ТЭС, показаны конденсатор пара К, где отработанный пар охлаждается внешней водой и конденсируется (при этом от пара отводится некоторое количество теплоты и выбрасывается в окружающую среду) и циркуляционный насос Н, который подает конденсат снова в котел. Таким образом, цикл замыкается. Схема ТЭЦ отличается тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду, подаваемую в главные тепловые магистрали.

Рассмотренная схема ТЭС является основной, в ней используется парогенератор, в котором водяной пар служит носителем энергии. Имеются тепловые станции с газотурбинными установками. Носитель энергии в таких установках в таких установках – газ с воздухом. Газ выделяется при сгорании органического топлива и смешивается с нагретым воздухом. Газовоздушная смесь при температуре 750–770 о С подается в турбину, которая вращает генератор. ТЭС с газотурбинными установками более маневренна, чем паротурбинная: легко пускается, останавливается и регулируется; пока мощности таких турбин в 5–8 раз меньше, чем паровых, и они должны работать на высокосортном топливе.

Сочетание паротурбинной и газотурбинной установок образует парогазовые установки, в них используются два энергоносителя – пар и газ.

Процесс производства электроэнергии на ТЭС можно разделить на три цикла: химический – процесс горения, в результате которого теплота передается пару; механический – тепловая энергия пара превращается в энергию вращения; электрический – механическая энергия вращения превращается в электрическую.

Общий коэффициент полезного действия ТЭС состоит из произведения коэффициентов полезного действия всех перечисленных циклов:

η тэс = η х · η м · η э

КПД ТЭС теоретически равен:

η тэс= 0,9 · 0,63 · 0,9 = 0,5.

Практически с учетом потерь КПД ТЭС находится в пределах 36–39%. Это означает, что 64–61% топлива используется «впустую», загрязняя окружающую среду в виде тепловых выбросов в атмосферу. КПД ТЭЦ примерно в 2 раза выше, чем КПД ТЭС. Поэтому использование ТЭЦ является существенным фактором энергосбережения.

Атомная электростанция отличается от ТЭС тем, что котел заменен ядерным реактором. Теплота ядерной реакции используется для получения пара.

Рис. 2.4. Принципиальная схема атомной электростанции

1 - реактор; 2 - парогенератор; 3- турбина;

4 - генератор; 5 - трансформатор; б - электролинии

Первичной энергией на АЭС является внутренняя ядерная энергия, которая при делении ядра выделяется в виде колоссальной кинетической энергии, которая, в свою очередь, превращается в тепловую. Установка, где идут эти превращения, называется реактором.

Через активную зону реактора проходит вещество теплоноситель, которое служит для отвода тепла (вода, инертные газы и т.д.). Теплоноситель уносит тепло в парогенератор, отдавая его воде. Образующийся водяной пар поступает в турбину. Регулирование мощности реактора производится с помощью специальных стержней. Они вводятся в активную зону и изменяют поток нейтронов, а значит, и интенсивность ядерной реакции.

Природное ядерное горючее атомной электрической станции – уран. Для биологической защиты от радиации используется слой бетона в несколько метров толщиной.

При сжигании 1 кг каменного угля можно получить 8 кВт·ч электроэнергии, а при расходе 1 кг ядерного топлива вырабатывается 23 млн. кВт·ч электроэнергии.

Более 2000 лет человечество использует водную энергию Земли. Теперь энергия воды используется на гидроэнергетических установках (ГЭУ) трех видов:

    гидравлические электростанции (ГЭС), использующие энергию рек;

    приливные электростанции (ПЭС), использующие энергию приливов и отливов морей и океанов;

    гидроаккумулирующие станции (ГАЭС), накапливающие и использующие энергию водоемов и озер.

Гидроэнергетические ресурсы в турбине ГЭУ преобразуются в механическую энергию, которая в генераторе превращается в электрическую.

Таким образом, основными источниками энергии являются твердое топливо, нефть, газ, вода, энергия распада ядер урана и других радиоактивных веществ.

Общая характеристика современного энергетического производства

Энергетика область общественного производства, охватывающая добычу энергетических ресурсов, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Энергосистема совокупность энергетических ресурсов; всœех видов, методов и средств их получения, преобразования, распределœения и использования, обеспечивающих снабжение потребителœей всœеми видами энергии.

В энергосистему входят:

· электроэнергетическая система;

· система нефте- и газоснабжения;

· система угольной промышленности;

· ядерная энергетика;

· нетрадиционная энергетика.

Из всœех вышеперечисленных в Республике Беларусь наиболее представлена электроэнергетическая система.

Электроэнергетическая система –совокупность взаимосвязанных единством схем и режимов оборудования и установок по производству, преобразованию и доставке конечным потребителям электрической энергии. Электроэнергетическая система включает в себя электрические станции подстанции, линии электропередачи, центры потребления электрической энергии.

Энергетика – одна из форм природопользования. В перспективе, с точки зрения технологии, технически возможный объем получаемой энергии практически неограничен, однако энергетика имеет существенные ограничения по термодинамическим (тепловым) лимитам биосферы. Размеры этих ограничений близки к количеству энергии, усваиваемой живыми организмами биосферы в совокупности с другими энергетическим процессами, идущими на поверхности Земли. Увеличение этих количеств энергии, вероятно, катастрофично или, по крайней мере, кризисно отразится на биосфере.

Наиболее часто в современной энергетике выделяют традиционную энергетику, основанную на использовании органического и ядерного топлива, и нетрадиционную энергетику, основанную на использовании возобновляемых и неисчерпаемых источников энергии .

Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии – электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях: ТЭС, ГЭС, АЭС.

Производство энергии крайне важного вида и снабжение ею потребителœей происходит в процессе энергетического производства, в котором можно выделить пять стадий :

1. Получение и концентрация энергетических ресурсов : добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т.д.;

2. Передача энергетических ресурсов к установкам, преобразующим энергию ; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т.д.;

3. Преобразование первичной энергии во вторичную , имеющую наиболее удобную для распределœения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию);

4. Передача и распределœение преобразованной энергии ;

5. Потребление энергии , осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной форме.

Потребителями энергии являются: промышленность, транспорт, сельское хозяйство, жилищно-коммунальное хозяйство, сфера быта и обслуживания.

В случае если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35–40%, остальная часть теряется, причем большая часть – в виде теплоты.

Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.

Наиболее удобный вид энергии - электрическая, которая может считаться основой цивилизации. Преобразование пер­
вичной энергии в электрическую производится на электрос­танциях: ТЭС, ГЭС, АЭС.

Примерно 70 % электроэнергии вырабатывают на ТЭС. Они делятся на конденсационные тепловые электростанции (КЭС), вырабатывающие только электроэнергию, и теплоэлек­троцентрали (ТЭЦ), которые производят электроэнергию и теплоту.

Рис. 2.2. Принципиальная схема тепловой электростанции: ПГ - парогенератор; Т - турбина; Г - генератор;

И - циркуляционный насос; К - конденсатор

В котле парогенератора ПГ при сжигании топлива выделя­ется тепловая энергия, которая преобразуется в энергию водя­ного пара. В турбине Т энергия водяного пара превращается в механическую энергию вращения. Генератор Г превращает механическую энергию вращения в электрическую. Схема ТЭЦ отличается тем, что по ней, помимо электрической энер­гии, вырабатывается и тепловая путем отвода части пара и нагрева с его помощью воды, подаваемой в тепловые магист­рали.

Есть ТЭС с газотурбинными установками. Рабочее тело в них - газ с воздухом. Газ выделяется при сгорании органи­ческого топлива и смешивается с нагретым воздухом. Газовоз­душная смесь при 750-770 °С подается в турбину, которая вращает генератор. ТЭС с газотурбинными установками более маневренна, легко пускается, останавливается, регулируется. Но их мощность в 5-8 раз меньше паровых.

Процесс производства электроэнергии на ТЭС можно разде­лить на три цикла: химический - процесс горения, в резуль­тате которого теплота передается пару; механический - теп­ловая энергия пара превращается в энергию вращения; элек­трический - механическая энергия превращается в электри­ческую.

Общий КПД ТЭС состоит из произведения КПД (ті) циклов:

Лтэс Лх"Лм"Лэ. Лх ~ Пэ ~ 90 % .

КПД идеального механического цикла определяется так называемым циклом Карно:

Где Ті и Т2 ■- температура пара на входе и выходе паровой турбины. На современных ТЭС Tt = 550 °С (823 °К), Т2 = 23 °С (296 °К).

823-296 1ЛП0/ __0/ Лм = -- 100 % = 63 %.

Г)тэс= 0,9 0,63 0,9 = 0,5 %.

Практически с учетом потерь г|тэс = 36-39 % . Из-за более полного использования тепловой энергии КПД ТЭЦ = 60-65 %.

Атомная электростанция отличается от ТЭС тем, что заменен ядерным реактором. Теплота ядерной реакции ис­пользуется для получения пара (рис. 2.3).

Рис. 2.3. Принципиальная схема атомной электростанции: 1 - реактор; 2 - парогенератор; 3 - турбина; 4 - генератор; 5 - трансформатор; 6 - электролинии

Первичной энергией на АЭС является внутренняя ядерная энергия, которая при делении ядра выделяется в виде колос­сальной кинетической энергии, которая, в свою очередь, пре­
вращается в тепловую. Установка, где идут эти превращения, называется реактором.

Через активную зону реактора проходит вещество теплоно­ситель, которое служит для отвода тепла (вода, инертные газы и т. д.). Теплоноситель уносит тепло в парогенератор, отдавая его воде. Образующийся водяной пар поступает в турбину. Ре­гулирование мощности реактора производится с помощью специальных стержней. Они вводятся в активную зону и изме­няют поток нейтронов, а значит, и интенсивность ядерной ре­акции.

Природное ядерное горючее атомной электрической стан­ции - уран. Для биологической защиты от радиации исполь­зуется слой бетона в несколько метров толщиной.

При сжигании 1 кг каменного угля можно получить 8 кВт-ч электроэнергии, а при расходе 1 кг ядерного топлива выраба­тывается 23 млн кВт-ч электроэнергии.

Более 2000 лет человечество использует водную энергию Земли. Теперь энергия воды используется на гидроэнергети­ческих установках (ГЭУ) трех видов: 1) гидравлические элек­тростанции (ГЭС); 2) приливные электростанции (ПЭС), ис­пользующие энергию приливов и отливов морей и океанов; 3) гидроаккумулирующие станции (ГАЭС), накапливающие и использующие энергию водоемов и озер.

Гидроэнергетические ресурсы в турбине ГЭУ преобразуют­ся в механическую энергию, которая в генераторе превраща­ется в электрическую.

Таким образом, основными источниками энергии являют­ся твердое топливо, нефть, газ, вода, энергия распада ядер урана и других радиоактивных веществ.

Cтраница 1


Традиционная энергетика - это совокупность технических устройств, использующих хорошо освоенные в технологическом отношении энергетические источники и способы преобразования получаемой от них энергии, в первую очередь электрическую.  

Отдавая день традиционной энергетике - угольной, газовой, нефтяной и термоядерной (к освоению которой мы уже близки), акцент необходимо сделать на экологически чистые, энергосберегающие технологии и возобновляемые источники - Солнце, ветер, водная стихия.  

Альтернативные источники энергии, Традиционная энергетика, Энергетика экологическая.  

Прибавим к этому устаревающее оборудование традиционной энергетики, отсутствие необходимой гибкости и мобильности при энергообеспечения динамического нефтегазового бизнеса, невысокие экологические показатели и не всегда высокое качество электроэнергии. Все это в совокупности заставляет нефтегазовые компании искать альтернативу и находить ее в создании собственных локальных источников энергии.  

Вместе с тем высокую озабоченность вызывают и аварии в традиционной энергетике, на объектах топливного цикла (от добычи сырья до обращения с отходами), а также на объектах с химическими технологиями.  

В последнее время ввиду возникших трудностей с финансированием крупных объектов традиционной энергетики возросло количество заказов на ГТУ-ТЭЦ малой и средней мощности. Представленные в таблице данные относятся только к газотурбинной части электростанции.  

Стремление решить эти и другие проблемы наблюдается практически с начала становления традиционной энергетики. Это стремление реализуется, во-первых, в поисках других первичных энергетических источников и, во-вторых, в разработке иных способов преобразования энергии первичных источников в электрическую. Нередко оба эти направления совмещены.  

Современная нетрадиционная энергетика - это тот резерв, который дает основания надеяться, что названные ранее проблемы традиционной энергетики могут быть решены в обозримом будущем и развитие энергетики будет продолжено с максимальной пользой для человечества.  

Годовые амортизационные отчисления на АЭС рассчитываются, как и на ТЭС, по нормам амортизации, которые являются едиными для аналогичных по устройству, функциональному назначению и условиям работы элементов основных фондов. Наряду с этим на АЭС используются устройства, не имеющие аналогов в традиционной энергетике. Для них по мере накопления опыта эксплуатации должны уточняться сроки службы и нормы амортизации. В нормах амортизации для АЭС должны получить отражение особые условия проведения капитального ремонта оборудования. По причине высокой радиоактивности некоторого оборудования и элементов их ремонт либо невозможен (их не ремонтируют, а заменяют новыми), либо связан со специальными дорогостоящими мероприятиями. Соответственно в нормах амортизации для АЭС должна повышаться реновационная составляющая HP при снижении составляющей по капитальному ремонту и модернизации НК-Р.  

Атомная энергетика в случае безаварийной работы еще более экологична, но и она загрязняет воздух такими токсичными веществами, как радиоактивный йод, радиоактивные инертные газы и аэрозоли. В то же время АЭС представляет собой значительно большую потенциальную опасность по сравнению с предприятиями традиционной энергетики.  

Сборник включает в себя работы по исследованиям в области теплофизики экстремальных состояний и физики высоких плотностей энергии. Рассматриваются различные модели уравнений состояния вещества в экстремальных условиях, некоторые задачи физики ударных и детонационных волн, методы генерации интенсивных импульсных потоков энергии, эффекты взаимодействия мощных ионных и электронных пучков, лазерного, рентгеновского и СВЧ излучения с веществом, экспериментальные методы диагностики быстрых процессов, физика низкотемпературной плазмы, проблемы управляемого термоядерного синтеза и традиционной энергетики, а также различные технологические аспекты. Издание адресовано специалистам в области физико-технических проблем энергетики.  

Безопасность нынешнего поколения реакторов обеспечивается увеличением количества различных систем безопасности и систем ограничения выхода активности, ужесточением требований к оборудованию и персоналу. В результате атомные электростанции становятся более сложными и, следовательно, более дорогостоящими. Атомная энергетика близка к своему экономически предельному уровню: дальнейшее наращивание систем безопасности ведет к снижению существующей конкурентоспособности атомной энергетики по сравнению с традиционной энергетикой.  

Технические устройства, составляющие традиционную энергетику, - это, во-первых, тепловые электростанции (ТЭС), работающие на минеральных - твердых, жидких и газообразных органических топливах (уголь, нефть, газ и др.); атомные электростанции (АЭС), работающие на ядерных топливах (уран, плутоний), получаемых из сырьевых минералов; гидравлические электростанции (ГЭС), использующие возобновляемые гидравлические энергетические ресурсы. Эти электростанции являются базовыми в современной энергетике, составляют так называемую большую энергетику. Их отличительные особенности: значительная единичная мощность, работа в общей электросети (возможна работа и в тепловой сети), единый стандарт на качество вырабатываемой электроэнергии. Во-вторых, в традиционную энергетику входят автономные газотурбинные, дизельные и другие установки, использующие ископаемые органические топлива, и автономные гидравлические установки. Эти установки составляют малую энергетику.  

Статьи по теме: