Когда внутренняя энергия равна нулю. Основы теплотехники

где C V – молярная теплоемкость газа при постоянном объеме.

2. Изобарический процесс происходит при постоянном давлении р = const.

Первый закон термодинамики для изобарического процесса записывается так:

(10)

т.е. все члены сохраняются.

В этом случае количество теплоты, необходимое для нагревания газа находится так

где С р – молярная теплоемкость газа при постоянном давлении.

Учитывая, что изменение внутренней энергии газа вычисляется по формуле (9), а работа может быть найдена из уравнения Менделеева-Клапейрона:

первый закон термодинамики можно переписать в виде:

(13)

Из последнего выражения находится связь молярных теплоемкостей С р и C V

где R = 8,31 Дж/(моль × К) – универсальная газовая постоянная.

Из уравнения (14), называемого уравнением Майэра, видно, что С Р > C V .

Большее значение С Р по сравнению с C V объясняется тем, что для нагревания 1 моля газа на 1 К при постоянном давлении требуется подвести больше тепла, чем для нагревания при постоянном объеме, так как часть тепла при изобарном нагревании должна пойти на совершение работы.

3. Изотермический процесс происходит при постоянной температуре T = const.

Первый закон термодинамики для изотермического процесса записывается так:

т.е. все тепло, подведенное к газу, идет только на совершение им работы, так как изменение внутренней энергии, ввиду постоянства температуры, равно нулю.

(16)

Теплоемкость в изотермическом процессе равна С Т = ¥.

Связь теплоемкости газов с числом степеней свободы его молекул

Согласно классической теории теплоемкостей газов молярные теплоемкости газов С Р и C V могут быть определены, если известно число степеней свободы i молекул данного вида. Под числом степеней свободы подразумевают число независимых координат, которые необходимо задать для того, чтобы полностью определить положение тела или частицы тела в пространстве. У одноатомных газов, молекулы которых состоят из одного атома (аргон, гелий), движение каждой молекулы описывается тремя независимыми координатами x , y , z , то есть каждая молекула обладает тремя степенями свободы.

Молекула двухатомного газа (водород, азот, кислород, окись углерода и др.) обладает пятью степеней свободы, т.к. кроме трех поступательных движений, она может совершать еще два вращательных движения вокруг

двух взаимно перпендикулярных осей, составляющих прямой угол с линией, соединяющей оба атома. Если расстояние между атомами в двухатомной молекуле может меняться (квазиупругая молекула), т.е. атомы совершают колебательное движение, то такая молекула обладает шестью степенями свободы. Три степени свободы соответствуют поступательному, две – вращательному и одна – колебательному движению атомов молекулы.

Молекулы трехатомного газа (если центры трех атомов не расположены на одной прямой) и многоатомных газов обладают шестью степенями свободы: из них три относятся к поступательному движению и три – к вращательному движению.

В основе классической теории теплоемкости лежит закон равномерного распределения энергии по степеням свободы, позволяющий определить среднее значение энергии одной молекулы.

Средняя кинетическая энергия поступательного движения молекулы одноатомного идеального газа пропорциональна его абсолютной температуре

(17)

Отсюда следует, это энергия, приходящаяся на одну степень свободы поступательного движения, равна . Следовательно, молекула, обладающая i степенями свободы, имеет энергию

где – постоянная Больцмана ( = 1,38 × 10 -23 Дж/К).

Тогда внутренняя энергия одного моля идеального газа будет

, (18)

где N A – число молекул в моле идеального газа.

Дифференцируя это выражение по температуре, получим для молярной теплоемкости идеального газа при постоянном объеме

(19)

Подставляя значение C V в уравнение Майера (8), находим выражение для молярной теплоемкости С Р

(20)

В ряде случаев необходимо знать отношение теплоемкостей С Р и C V , которое будет

Из формул (11) и (12) видно, что по классической теории теплоемкость газов не должна зависеть от температуры.

Адиабатный процесс

Адиабатным называют процесс изменения состояния газа, происходящий без теплообмена с окружающей средой. Всякий, быстро протекающий процесс в газе, практически адиабатен. Адиабатный процесс имеет место в двигателях внутреннего сгорания, холодильных установках и т.д.

При адиабатном процессе , и уравнение первого начала термодинамики принимает вид:

Для одного моля газа можно записать

Таким образом, при адиабатном процессе работа может совершаться только за счет изменения запаса внутренней энергии системы. Следовательно, при адиабатном расширении температура газа должна уменьшаться (dT < 0), а при адиабатном сжатии температура должна повышаться (dT > 0). При адиабатном сжатии - расширении изменяются все параметры состояния газа (р , V , T ). Увеличение температуры газа при адиабатном сжатии происходит вследствие того, что работа, затрачиваемая извне на сжатие газа, целиком идет на увеличение его внутренней энергии.

Подставив в уравнение (23) значение из уравнения Менделеева – Клапейрона и разделив переменные, запишем его в виде

или , (24)

Интегрируя и потенцируя выражение (24), получим:

Уравнения (25) являются уравнениями адиабатного процесса и называются уравнениями Пуассона. Поскольку показатель степени адиабаты , кривая адиабатного процесса (адиабата) идет круче, чем изотерма .

Описание установки и метода измерений

Для определения отношения теплоемкостей используется метод, основанный на адиабатном расширении газа.

Воздух, заключенный в сосуд, последовательно проходит через три состояния (рис. 1). Первое состояние характеризуется параметрами р 1 V 1 T 1 . Второе состояние газа определяется параметрами р 2 V 2 T 2 . Третьему состоянию соответствуют параметры р 3 V 2 T 1 . Из первого во второе состояние газ переходит путем адиабатного расширения. Из второго в третье состояние газ переходит изохорно.

В адиабатном процессе 1-2 давление и объем газа по уравнению Пуассона связаны следующими соотношениями:

Начальное и конечное состояния газа характеризуются одной и той же температурой, поэтому на основании закона Бойля-Мариотта получаем

Решая уравнения (26) и (27) относительно , получим

(28)



Рис. 1

Так как давление р 1 , р 2 , р 3 отличаются друг от друга незначительно, при приближенном вычислении разности логарифмов в формуле (28) можно заменить разностями самих чисел

В проводимом эксперименте давление р 2 равно атмосферному, а давления р 1 и р 3 превышают атмосферное давление р 2 на величины, определяемые высотами столбов жидкости в манометре h 1 и h 2 соответственно. С учетом этого формула (29) для расчета значения примет вид

Измерительная установка для определения состоит из стеклянного баллона большой емкости 1, крана 3, открытого жидкостного манометра 4 и ручного нагнетательного насоса 2 (рис. 2).



Если в баллон при открытом кране 3 накачивается воздух, то давление его в баллоне повышается и становится выше атмосферного на величину h 1 , указываемую манометром. Процесс 1-2 (см. рис. 1) осуществляется открыванием крана 3 с тем, чтобы давление в баллоне сравнялось с атмосферным. Затем идет процесс изохорического нагревания 2-3, в результате которого давление повышается и превышает атмосферное на величину h 2 .

Порядок выполнения работы

1. Открывают кран 3.

2. Насосом 2 нагнетают воздух в баллон и краном 3 отключают его от установки. (Во избежание выброса жидкости из манометра нужно делать 2-3 качания).

3. После того, как температура в баллоне станет равной температуре окружающей среды (давление в баллоне перестанет меняться); производят отсчет разности уровней жидкости в манометре h 1 (снимают показания ма-

нометра в правом и левом коленах L 1 и L 2 , берут их сумму или разность в зависимости от положения нуля отсчета).

4. Открыванием крана 3 дают воздуху, находящемуся в баллоне, достаточно быстро, а, следовательно, адиабатно расширяться до выравнивания давления в баллоне с атмосферным давлением. Кран 3 закрывают в момент, когда прекратится звук, возникающий при выходе воздуха, или же в момент, когда уровни жидкости в обоих коленах сравняются.

5. Как только газ, охлажденный при адиабатном расширении, нагреется до комнатной температуры (примерно через 2-3 минуты после закрытия крана 3), отсчитывают показания манометра L 3 и L 4 и находят h 2 .

6. Вычисляется значение по формуле (30).

7. Опыт повторяют не менее десяти раз при различных избыточных давлениях воздуха (значениях h 1 ).

Обработка результатов измерений

1. Результаты проведенных измерений и вычислений записываются в таблицу.

Значения L 1 , L 2 , L 3 , L 4 , h 1 , h 2 измеряются в миллиметрах столба жидкости, налитой в манометр.

2. Вычисляется среднее значение .

Термодинамика в отличие от молекулярно-кинетической теории, изучает физические свойства макроскопических тел (термодинамических систем), не вникая в их молекулярное строение. Термодинамический метод базируется на законе сохранения и превращении энергии.

Физические величины, характеризующие термодинамическую систему, называются термодинамическими параметрами . К ним относятся: объем, давление, температура, концентрация и др. Любое изменение в термодинамической системе, связанное с изменением ее параметров, называется термодинамическим процессом , а уравнение, связывающее между собой параметры системы, называется уравнением состояния . Примером такого уравнения является уравнение Менделеева - Клапейрона (6.1)

Внутренняя энергия идеального газа

Важнейшей характеристикой термодинамической системы является ее внутренняя энергия U, складывающая из потенциальной энергии взаимодействия частиц системы и кинетической энергии их теплового движения.

Внутренняя энергия является функцией состояния системы, т.е. в каждом состоянии система обладает вполне определенным значением внутренней энергии, не зависящим от того, каким путем система перешла в это состояние.

Так как в идеальном газе потенциальная энергия молекул равна нулю (считается, что молекулы между собой не взаимодействуют), то внутренняя энергия идеального газа равна полной кинетической энергии всех его молекул. Обозначив внутреннюю энергию одного моля газа через U μ , а среднюю кинетическую энергию молекулы через , можем записать для одного моля газа:

U μ = N A (6.18)

где N A – число Авогадро.

Подставляя значение из формулы (6.12), получим внутреннюю энергию для одного моля газа:

(6.19)

Если число молей , то для любого количества вещества

(6.20)

Следовательно, внутренняя энергия газа пропорциональна его массе, числу степеней свободы молекулы и абсолютной температуре газа.

Первый закон термодинамики

Внутреннюю энергию термодинамической системы можно изменить за счет работы, которую либо внешние тела совершают над ней, либо сама система совершает над внешними телами. Например, приложив внешнюю силу, мы сжимаем газ, в результате чего его температура повышается, а, следовательно, увеличивается и внутренняя энергия. Внутреннюю энергию можно изменить также, передавая системе (или отнимая у нее) некоторое количество теплоты.

Согласно закону сохранения энергии, изменение внутренней энергии системы должно равняться сумме полученной ею теплоты и совершенной над ней работы . Эта формулировка закона сохранения энергии применительно к термодинамическим системам носит название первого закона термодинамики :

В дифференциальной форме первый закон термодинамики имеет вид:

Необходимо подчеркнуть, что в отличие от внутренней энергии, являющейся функцией состояния, работа и количество теплоты зависят не только от начального и конечного состояний системы, но и от пути, по которому происходило изменение ее состояния. Следовательно, величины dQ и dА не являются полными дифференциалами, по которым может производиться интегрирование. Для того, чтобы подчеркнуть это обстоятельство для бесконечно малых приращений тепла и работы применяют более корректное обозначение Q и A и тогда первый закон примет вид: Q = dU + A (6.22)

Найдем в общем виде работу, совершаемую газом, (рис.6.6, а). Если газ, расширяясь, перемещает поршень на расстояние dx, то он производит работу (см. формулу 2.19):

A = F · dx = P · S · dx = PdV, (6.22)

где S – площадь поршня; Sdx = dV – изменение объема газа в цилиндре.

Полная работа, совершаемая газом при изменении его объема от V 1 до V 2 , равна:

Графически процесс изменения состояния газа при его расширении изображается участком кривой 1-2 в координатах Р – V (рис.6.6, б). Точки 1 и 2 соответствуют начальному и конечному состояниям газа. Элементарная работа PdV изображается заштрихованной площадью. Полная работа, определяемая формулой 6.23, изображается площадью V 1 – 1 – 2 - V 2 под кривой 1 – 2.

Теплоемкость идеальных газов .

Количество тепла, которое надо сообщить телу, чтобы изменить его температуру на 1 К, называется теплоемкостью тела С.

Согласно этому определению

, [С] = Дж/К (6.24)

Теплоемкость единицы массы вещества называется удельной теплоемкостью С уд

Теплоемкость одного моля называется молярной теплоемкостью С м.

, [С м ] = Дж/моль · К (6.26)

где ν = m/μ – число молей.

Как следует из формул (6.25) и (6.26), удельная теплоемкость связана с молярной соотношением:

С м = С уд · μ (6.27)

Теплоемкость газа зависит от того, при каких условиях она определяется: при постоянном объеме или постоянном давлении. Покажем это, для чего запишем первый закон термодинамики с учетом формулы (6.22):

δQ = dU + PdV (6.28)

Если газ нагревается при постоянном объеме (изохорный процесс), то dV=0 и работа РdV = 0. В этом случае δQ = dU, т.е. передаваемое газу тепло идет только на изменение его внутренней энергии. Теплоемкость газа при постоянном объеме:

С учетом формулы (6.20)

(6.29)

и тогда изохорная теплоемкость

Для одного моля (m/µ = 1) молярная теплоемкость при постоянном объеме

Теперь, с учетом равенства (6.28), найдем теплоемкость при постоянном давлении (изобарный процесс):

(при этом учли, что dU/dT = C V). Из (6.32) следует, что С P > C V . Это объясняется тем, что при нагревании при P = const сообщенное газу тепло идет не только на увеличение его внутренней энергии, но и на совершение работы.

Для одного моля идеального газа уравнение Менделеева – Клапейрона имеет вид PV=RT и потоку PdV=RdT. Учитывая это, получим уравнение Майера , выражающее связь между молярными теплоемкостями при постоянном давлении и постоянном объеме:

С мр = С mv + R (6.33)

Учитывая выражение (6.31) можно записать в виде

При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение С P к С V:

(6.35)

Величина γ называется коэффициентом Пуассона , i – число степеней свободы молекул (см. рис.6.2).

Повышение температуры приводит, как отмечалось выше, к появлению колебательных степеней свободы, в результате чего теплоемкость возрастает. Наоборот, при низких температурах число степеней свободы уменьшается, так как «вымораживаются» вращательные степени свободы и теплоемкость газа уменьшается.

Изопроцессы

Изопроцессом называется процесс, при котором один из параметров термодинамической системы остается постоянным. Связь между параметрами системы дает уравнение Менделеева – Клапейрона.

Изотермический процесс (Т = const) .

В этом случае уравнение состояния имеет вид:

PV = const (6.36)

Для нескольких конкретных состояний газа можно записать:

P 1 V 1 = P 2 V 3 = . . ., = P n V n

График изотермического процесса (изотерма) в координатах P – V изображается гиперболой (рис.6.7).

Подставляя из формулы (6.1) в формулу работы (6.23), получим для изотермического процесса:

(6.37)

Работа изотермического процесса на рис.6.7 численно равна площади под кривой 1-2.

Из формулы 6.29 следует, что изменение внутренней энергии при dT = 0 в изотермическом процессе равно 0. Тогда первый закон термодинамики применительно к изотермическому процессу примет вид Q = A .

т.е. система: либо, получая тепло от внешней среды, совершает работу, расширяясь, либо отдает тепло внешней среде вследствие того, что внешние тела совершают над ней работу, сжимая ее. Следовательно, для того, чтобы при изотермическом расширении температура не падала, к газу необходимо подводить количество теплоты, эквивалентное работе расширения. Наоборот, при сжатии система должна отдавать среде количество теплоты, эквивалентное работе сжатия.

Изобарный процесс (Р = const) .

Уравнение состояния при Р = const имеет вид

Const или

График изобарного процесса в координатах Р – V приведен на рис.6.7. Работа при изобарном процессе (см.6.23)

(6.39)

на графике работа при Р = const численно равна площади прямоугольника под прямой 1-3.

Первый закон термодинамики для изобарного процесса

Изохорный процесс (V = const) .

При изохорном процессе уравнение состояния

Или (6.40)

Поскольку dV = 0, то работа при изохорном процессе равна нулю. Первый закон термодинамики для изохорного процесса имеет вид

т.е. либо вся теплота, сообщаемая системе, идет на увеличение ее внутренней энергии, либо система отдает среде тепло, уменьшая свою внутреннюю энергию.

Адиабатический процесс .

Адиабатическим называется процесс, протекающий без теплообмена с внешней средой(δQ = 0). Близким к адиабатическим являются все быстропротекающие процессы, например, расширение и сжатие горючей смеси в двигателях внутреннего сгорания.

Учитывая, что δQ = 0, запишем первый закон термодинамики для адиабатического процесса:

А = -ΔU (6.41)

Отсюда следует, что если газ совершает работу (адиабатически расширяясь), то А>0, соответственно ΔU<0 и ΔТ<0, т.е. газ охлаждается. Наоборот, при адиабатическом сжатиии газа А<0, тогда ΔU >0 и ΔТ >0, т.е. газ нагревается.

Используя выражение (6.23) и учитывая, (6.20), перепишем равенство (6.41):

(6.42)

Продифференцируем уравнение Менделеева – Клапейрона (6.1):

(6.43)

Исключив из уравнений (6.42) и (6.43) температуру Т, получим

Разделив переменные и учитывая равенство (6.35), найдем

Интегрируя это равенство, получим

γlnV + lnP = const

Или в окончательном виде связь между давлением и объемом газа в адиабатическом процессе:

PV γ = const (6.44)

Это отношение называется уравнением адиабаты или уравнением Пуассона . Кривая адиабаты представлена на рис.6.7, которая падает с ростом объема круче, чем изотерма. Это непосредственно следует из того, что γ>1 (см. также формулу 6.35).

Уравнение Пуассона можно выразить и через другие параметры с помощью уравнения Менделеева – Клапейрона

T γ P 1-γ = const

Вычислим работу расширения газа в адиабатическом процессе. Учитывая равенство (6.42), получим

(6.45)

Основы термодинамики

Термодинамика изучает процессы и явления, происходящие в природе и технике, с точки зрения преобразования энергии, в том числе внутренней энергии тел.

Термодинамическая система – это совокупность тел, способных обмениваться энергией между собой и с другими системами. Замкнутая термодинамическая система не обменивается энергией с другими системами.

Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотически движутся и взаимодействуют друг с другом, поэтому любое тело обладает внутренней энергией.

Внутренняя энергия - это величина, характеризующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц.

Внутренняя энергия идеального газа складывается только из энергии движения молекул, так как взаимодействием молекул можно пренебречь. Внутренняя энергия одноатомного идеального газа определяется по формуле U = 3/2 m/М RT. Внутренняя энергия одного моля одноатомного идеального газа:

Внутреннюю энергию можно изменить двумя способами: путем теплопередачи и путем совершения механической работы
Теплопередача - это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопередача бывает трех видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q). Принято считать, что Q > 0 , если тело получает энергию, и Q < 0 , если тело отдает свою энергию

При совершении механической работы должно происходить направленное перемещение тел под действием сил, например, перемещение поршня в цилиндре с газом. Если газ расширяется, то сила давления газа на поршень совершает положительную работу (A > 0 ) за счет внутренней энергии газа. Если внешние силы больше силы давления газа, то газ сжимается и работа газа будет отрицательной (A < 0 ), при этом внутренняя энергия увеличивается.

При изобарном нагревании газ совершает работу над внешними силами , где V1 и V2 - начальный и конечный объемы газа. Если процесс не является изобарным, величина работы может быть определена площадью фигуры ABCD, заключенной между линией, выражающей зависимость p(V), и начальным и конечным объемами газа V

Первый закон термодинамики :

изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. ,



где - изменение внутренней энергии, Q - количество теплоты, переданное системе, А - работа внешних сил. А*-работа самой системы, т.е.работа газа. Если система сама совершает работу и получает или отдает теплоту, то изменение ее внутренней энергии∆U = Q – A .

Применение первого закона термодинамики к изопроцессам
В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закона термодинамики примет вид: , т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.
В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: .
При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е. А = 0, и уравнение первого закона имеет вид , т. е. переданное количество теплоты идет на увеличение внутренней энергии газа.
Адиабатным называют процесс , протекающий без теплообмена с окружающей средой. Q = 0, следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается,

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек ) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп ), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U . Единицей внутренней энергии является 1 джоуль (1 Дж ). U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутреннюю энергию можно изменить при совершении работы . Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи , о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Опыт показывает, что внутренняя энергия идеального газа зависит только от температуры:

Здесь В - коэффициент пропорциональности, который остается постоянным в весьма широком интервале температур.

Отсутствие зависимости внутренней энергии от занимаемого газом объема указывает на то, что молекулы идеального газа подавляющую часть времени не взаимодействуют друг с другом. Действительно, если бы молекулы взаимодействовали между собой, во внутреннюю энергию входила бы слагаемым потенциальная энергия взаимодействия, которая зависела бы от среднего расстояния между молекулами, т. е. от .

Отметим, что взаимодействие должно иметь место при столкновениях, т. е. при сближении молекул на очень малое расстояние. Однако такие столкновения в разреженном газе происходят редко. Подавляющую часть времени каждая молекула проводит в свободном полете.

Теплоемкостью какого-либо тела называется величина, равная количеству тепла, которое нужно сообщить телу, чтобы повысить его температуру на один кельвин. Если сообщение телу количества тепла повышает его температуру на то теплоемкость по определению равна

Эта величина измеряется в джоулях на кельвин (Дж/К).

Теплоемкость моля вещества, называемую молярной теплоемкостью, мы будем обозначать прописной буквой С. Измеряется она в джоулях на моль-кельвин (Дж/(моль К)).

Теплоемкость единицы массы вещества называется удельной теплоемкостью. Ее мы будем обозначать строчной буквой с. Измеряется с в джоулях на килограмм-кельвин

Между молярной и удельной теплоемкостями одного и того же вещества имеется соотношение

( - молярная масса).

Величина теплоемкости зависит от условий, при которых происходит нагревание тела. Наибольший интерес представляет теплоемкость для случаев, когда нагревание происходит при постоянном объеме или при постоянном давлении. В первом случае теплоемкость называется теплоемкостью при постоянном объеме (обозначается ), во втором - теплоемкостью при постоянном давлении

Если нагревание происходит при постоянном объеме, тело не совершает работы над внешними телами и, следовательно, согласно первому началу термодинамики (см. (83.4)), все тепло идет на приращение внутренней энергии тела:

Из (87.4) вытекает, что теплоемкость любого тела при постоянном объеме равна

Такая запись подчеркивает то обстоятельство, что при дифференцировании выражения для U по Т объем следует считать постоянным. В случае идеального газа U зависит только от Т, так что выражение (87.5) можно представить в виде

(чтобы получить молярную теплоемкость, нужно взять внутреннюю энергию моля газа).

Выражение (87.1) для одного моля газа имеет вид Продифференцировав его по Т, получим, что Таким образом, выражение для внутренней энергии одного моля идеального газа можно представить в виде

где - молярная теплоемкость газа при постоянном объеме.

Внутренняя энергия произвольной массы газа будет равна внутренней энергии одного моля, умноженной на число молей газа, содержащихся в массе :

Если нагревание газа происходит при постоянном давлении, то газ будет расширяться, совершая над внешними телами положительную работу. Следовательно, для повышения температуры газа на один кельвин в этом случае понадобится больше тепла, чем при нагревании при постоянном объеме, - часть тепла будет затрачиваться на совершение газом работы. Поэтому теплоемкость при постоянном давлении должна быть больше, чем теплоемкость при постоянном объеме.

Напишем уравнение (84.4) первого начала термодинамики для моля газа:

В этом выражении индекс при указывает на то, что тепло сообщается газу в условиях, когда постоянно. Разделив (87.8) на получим выражение для молярной теплоемкости газа при постоянном давлении:

Слагаемое равно, как мы видели, молярной теплоемкости при постоянном объеме. Поэтому формула (87.9) может быть написана следующим образом:

(87.10)

Величина представляет собой приращение объема моля газа при повышении температуры на один кельвин, получающееся в случае, когда постоянно. В соответствии с уравнением состояния (86.3) . Дифференцируя это выражение по Т, полагая р=const, находим

Статьи по теме: