О конференции Strata AI: будущее искусственного интеллекта. Человечество, возможно, стоит на пороге создания искусственного интеллекта

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Технологические направления ИИ. Данные Deloitte

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Основные коммерческие сферы применения технологий искусственного интеллекта

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

Основные коммерческие сферы применения технологий искусственного интеллекта в банках

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

Использование ИИ в госуправлении

ИИ в криминалистике

  • Распознавание образов - используется в т.ч. для выявления преступников в общественных пространствах.
  • В мае 2018 года стало известно об использовании голландской полицией искусственного интеллекта для расследования сложных преступлений.

Как сообщает издание The Next Web, правоохранительные органы начали оцифровывать более 1500 отчетов и 30 млн страниц, связанных с нераскрытыми делами. В компьютерный формат переносят материалы, начиная с 1988 года, в которых преступление не раскрывалось не менее трех лет, и преступник были приговорен к более 12 годам лишения свободы.

Раскрыть сложное преступление за день. Полиция берет ИИ на вооружение

После оцифровки всего контента он будет подключен к системе машинного обучения , которая будет анализировать записи и решать, в каких делах используются самые достоверные доказательства. Это должно снизить время обработки дел и раскрытия прошлых и будущих преступлений с нескольких недель до одного дня.

Искусственный интеллект будет распределять дела по их «разрешимости» и указывать на возможные результаты экспертизы ДНК. Затем планируется автоматизировать анализ и в других областях судебной экспертизы и, возможно, даже охватить данные в таких областях, как общественные науки и свидетельские показания.

Кроме того, как рассказал один разработчиков системы Джерун Хаммер (Jeroen Hammer), в будущем могут быть выпущены API -функции для партнёров.


В голландской полиции есть специальное подразделение, специализирующееся на освоении новых технологий для раскрытия преступлений. Именно он и создало ИИ-систему для быстрого поиска преступников по уликам.

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что машинный интеллект сможет быстро обрабатывать данные и учитывать значительно больше факторов, чем судья-человек.

Эксперты-психологи, впрочем, считают, что отсутствие эмоциональной составляющей при рассмотрении судебных дел негативно скажется на качестве решения. Вердикт машинного суда может оказаться слишком прямолинейным, не учитывающим важность чувств и настроения людей.

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

Искусственным интеллектом принято называть раздел информатики, который занимается изучением возможностей обеспечения разумных действий и рассуждений при помощи вычислительных систем и других искусственных устройств. В большинстве случаев, при этом, заранее известен алгоритм решения задач.

Необходимо отметить, что в научных кругах не существует точного определения данной науки, потому как решения вопроса о статусе и природе человеческого мозга также не существует. Точно также отсутствует и точный критерий достижения вычислительными машинами «разумности», несмотря на то, что на первых этапах развития искусственного интеллекта использовались определенные гипотезы, в частности, тест Тьюринга (цель – определить, умеет ли машина мыслить).

Данная наука имеет тесные взаимосвязи с психологией, трансгуманизмом, нейрофизиологией. Подобно всем компьютерным наукам, она пользуется математическим аппаратом. Искусственный интеллект является довольно молодой областью исследований, начало которой было положено в 1956 году. В данный момент времени развитие этой науки находится в состоянии так называемого спада, когда достигнутые ране результаты применяются в различных областях науки, промышленности, в бизнесе и повседневной жизни.

В настоящее время существует четыре основных подхода к изучению построения систем искусственного интеллекта: логистический, структурный, эволюционный и имитационный. Логистический подход в своей основе содержит так называемую Булеву алгебру, хорошо знакомую программистам. Большинство систем искусственного интеллекта, построенных по логистическому принципу, представляют собой определенную машину доказательства теорем: исходная информация содержится в виде аксиом, а логические выводы формулируются по правилам отношений между этими аксиомами. В каждой такой машине есть блок генерирования цели, причем система вывода доказывает эту цель как теорему. Эта система больше известна под названием экспертной системы.

Структурный подход в качестве основы системы искусственного интеллекта использует моделирование структуры мозга человека. Среди первых подобных попыток необходимо отметить перцептрон Розенблатта. Основная структурная моделируемая единица – нейрон. Со временем возникли новые модели, которые в настоящее время известны, как нейронные сети.

В случае использования эволюционного подхода при построении систем искусственного интеллекта, основная часть внимания уделяется, как правило, построению начальной модели, а также тем правилам, по которым эта модель может эволюционировать. Классическим примером эволюционного алгоритма является генетический алгоритм.

Имитационный подход в основном используется в кибернетике. Одно из базовых понятий данного подхода – это объект, поведение которого имитируется, то есть, так называемый «черный ящик». Таким образом, моделируется способность человека копировать действия других, не вдаваясь в подробности, зачем это нужно (что экономит массу времени, особенно в самом начале жизни человека).

В современном мире развитие искусственного интеллекта происходит весьма бурно. Многие ученые делают самые разнообразные и невероятные прогнозы относительно того, как будет развиваться эта наука в ближайшем будущем, однако большинство из них уверены в том, что все новые открытия будут основаны на существующих на данный момент разработках. Среди основных технологий, которые будут определять жизнь человека в будущем, необходимо, в частности, отметить:
— нанотехнологии (качественный переход на новый уровень технологий);
— дальнейшее развитие искусственного интеллекта (которое в скором будущем вполне возможно сможет опередить своих создателей по умственным возможностям);
— развитие глобальных, в первую очередь, сетевых коммуникаций (в частности, так называемая «коммуникационная кожа», то есть глобальная информационная сеть, которую планируют создать к 2025 году, и которая будет обладать способностями чувствовать все, что угодно);
— роботизация (роботы будут заниматься выполнением сложных задач, в том числе строительством домов);
— генная инженерия (человеческая цивилизация начнет массово покорять вселенную, массово летать в космос).

Какими бы ни были прогнозы на будущее, уже сейчас существуют некоторые проекты, на которые необходимо обратить внимание. Речь, в частности, идет о проекте по созданию искусственного мозга под названием «Голубой мозг». Разработкой проекта занимаются ученые-исследователи, представители Федеральной политехнической школы (Лозанна). Они сумели создать модель-схему расположения синапсов в головном мозге крыс. Как заявил директор проекта Генри Макрам, результаты оказались выше всяческих ожиданий. Вполне возможно, что исследователи в скором времени смогут ответить на многие вопросы, которые до настоящего времени беспокоили умы ученых: придет ли на смену человеческому разуму искусственный и будет ли он более высокоразвитым? Является ли человек замыкающим звеном в цепочке эволюции планеты?

Для тех, кто не слышал о данном проекте, вкратце напомним: проект «Голубой мозг» является широкомасштабной и весьма смелой исследовательской программой, которая стартовала еще в 2005 году. Основная цель проекта заключалась в создании модели структуры и функционирования мозговой активности различных животных с целью дальнейшего моделирования человеческого неокортекса. Перед исследователями стояло непростое задание: разработать новые подходы в процессе исследований патологий головного мозга. Новаторство исследования заключалось в том, что ученые попытались интегрировать все научные достижения в области нейробиологии, дополнить их своими эмпирическими данными, и на основе всех этих данных смоделировать мозговую активность при помощи Blue Gene – сверхмощного компьютера.

Миллионы нервных клеток, которые заключены в человеческом мозге, для передачи импульсов соединяются между собой. Таким образом, перерабатывается информация, поступающая в мозг. Такая связь между нейронами называется синаптической. Однако ученые не могли определить, как на практике материальные предметы преобразуются в мысли. До недавнего времени существовала теория о существовании химических связей между нервными клетками, однако результаты проекта «Голубой мозг» свидетельствуют о том, что связи между нейронами, в большинстве своем, создаются случайно. По мнению одного из исследователей, нейроны существуют независимо друг от друга и вступают во взаимодействие лишь после столкновения. Более того, большинство синаптических связей, смоделированных виртуально, предсказывают расположение таких же связей, но в живом мозге. Таким образом, можно говорить о том, что виртуальная модель очень близка к реальности.

Несмотря на столь значимые результаты, нашлось немало ученых, которые подвергли критике проект. По их мнению, полученные результаты могут свидетельствовать только о структуре синапсов, но не об их функциональности. Дело в том, что в виртуальной модели содержится ограниченное количество нервных клеток, что не может отразить всю многогранность нейронов в человеческом мозге. Таким образом, все полученные результаты могут помочь проанализировать деятельность головного мозга на локальном уровне, но не в масштабах всей его работы.

В 2013 году в Лозанне планируется к запуску еще один аналогичный проект — Human Brain Project. В его рамках к 2023 году ученые из 13 стран собираются создать самый крупный в мире компьютерный мозг, в котором будет работать столько же нейронов, сколько и в человеческом мозге – сто миллиардов. На первый взгляд может показаться, что подобную задачу решить невозможно, однако исследователи преследуют благие цели – изучение болезней головного мозга с целью дальнейшей разработки необходимых лекарственных препаратов. По мнению директора проекта профессора Маркрама, создание компьютерной модели мозга просто необходимо, ведь благодаря этому можно унифицировать ход исследований и проводить эксперименты, совершенствуя и исправляя ее.

Еще одним проектом, который стартовал в 2010 году, является проект компании DARPA совместно с SRI International. Суть его заключается в разработках прорывного искусственного интеллекта, который будет способен обрабатывать и передавать данные, копируя механизмы работы человеческого мозга. Электронная адаптивная нейроморфная масштабируемая система SyNAPSE, по замыслу разработчиков, должна превзойти традиционные алгоритмы обработки данных и будет способна автономно заниматься изучением сложной среды.

На данный момент военные пользуются искусственным интеллектом для обработки большого количества информации, в частности, данных разведки и видео. Вся эта информация должна быть быстро расшифрована и проанализирована. Для новой системы это не составит большого труда. Она будет использовать математическую логику, будет заниматься решением простых теорем на основе данных сенсоров, принимать решения и выполнять необходимые действия.

Более того, Пентагон намерен использовать данную модель искусственного интеллекта в качестве виртуального личного помощника, который сможет реагировать на голосовую команду и выполнять функции секретаря. Напомним, ранее DARPA совместно с SRI International уже занимались разработками персонального помощника под названием CALO. Проект был завершен в 2009 году. Программа способна рассуждать, понимать инструкции, узнавать, объяснять свои действия, адекватно реагировать на неизвестную ситуацию и обсуждать проведение операции после ее завершения. Данная программа берет необходимые данные из контактов пользователя, его электронной почты, проектов и задач. Затем создается реляционная модель окружения пользователя, происходит обучение. В итоге Искусственный интеллект может вести переговоры и урегулировать конфликты от имени пользователя. К сожалению, данная программа работает только на персональном компьютере, не будучи интегрированной в робота.

В 2011 году в Японии был разработан первый прототип искусственного мозга. Искусственный интеллект может обрабатывать огромное количество информации, однако роботы еще не наделены способностью мыслить. Разработчики пока с этим не спешат…

По мнению исследователей, роботы ближайшего будущего во многом будут похожи на людей: они смогут ходить на двух ногах, смогут различать лица, поддерживать беседу, выполняют просьбы, однако по своей сути – это всего лишь машины, подобные человеку. Все их действия подчинены заранее подготовленному алгоритму, а потому – примитивны. И только в том случае, если удастся реализовать технологию бимолекулярного вычисления, машины смогут мыслить и получат способность к творчеству. По словам разработчиков, новый механизм обработки информации очень напоминает работу человеческого мозга. В голове человека находятся миллионы нейронов, которые вступают в постоянное взаимодействие друг с другом. Суть новой технологии заключается в том, что каждая молекула может иметь до трех сотен направлений взаимосвязей. Таким образом, благодаря новой технологии машины смогут решать те задачи, которые в данный момент недоступны для них. По словам исследователей, новые разработки предполагается применить в области диагностики и лечения онкологических болезней: программируемые молекулярные системы будут вводиться в раковые клетки и трансформировать их в здоровые.

В мае 2017 года скончался полковник Станислав Петров. Этот офицер в 1983 году своими профессиональными действиями предотвратил ядерную войну. Во время его дежурства пришел сигнал со спутников наблюдения о старте нескольких ракет с территории США. Ядерная атака. Петров должен был принять роковое решение. В этой критической ситуации он мгновенно перепроверил информацию по другим источникам и принял решение, что это - ложная тревога. Возможный ответный ядерный удар не состоялся. Подобные ситуации бывали и в американских ядерных силах. И всякий раз, к нашему счастью, люди принимали верное решение.

А вот искусственный интеллект - какое он принял бы решение в такой ситуации? Человек ведь существо моральное. Станислав Петров осознавал цену своего решения с нравственных позиций. Ученые смогут впихнуть в искусственный интеллект мораль? Это первый вопрос. А второй: если этот искусственный интеллект будет сам развиваться, это саморазвивающаяся система, он, может быть, себе свою новую мораль придумает. И совсем не такую, как наша. И в этой его моральной системе, мы, люди, не окажемся лишними?

Когда была осознана колоссальная разрушительная мощь ядерного оружия, сразу заговорили о невозможности его применения. Цена будет слишком велика. А сейчас, когда человечество, возможно, стоит на пороге создания искусственного интеллекта, кто-нибудь обсуждает серьезно опасности и риски? Почти все пребывают в состоянии эйфории: какие новые возможности перед нами открываются! Может, и открываются, а может, и закрываются.

Еще совсем недавно это казалось фантастикой, и вот уже безнадежно устарело - бросать компьютерный чип в кипящую сталь в попытке предотвратить восстание машин теперь бесполезно, микропроцессоры куда более мощные, чем у Терминатора образца 1991 года. Сейчас повсюду искусственный разум стремится к человеческому, а люди, кажется, приняли грядущее уничтожение как нечто неизбежное.

Видео телеканала CNBC:

Ты хочешь уничтожить людей? Пожалуйста, скажи «нет!»

Ок, я уничтожу людей, - отвечает робот София.

У современного Терминатора черты лица актрисы Одри Хэпберн - по крайней мере, так говорят разработчики - робот София способна поддержать разговор, повторяет мимику человека, но когда шутит про уничтожение людей, почему-то не улыбается.

На этой неделе в торжественной обстановке София получила гражданство Саудовской Аравии - страны, которая вкладывает сотни миллионов долларов в развитие технологии искусственного интеллекта. Это передовое направление, без которого будущее уже не представляет себе не только крупный бизнес, но и правительства многих государств. Какие бы риски это будущее в себе ни таило. Потеря контроля над цифровым разумом лишь один из вариантов. Угроза может показаться не вполне конкретной - но футурологи готовы привести примеры.

«Два искусственных военных интеллекта в двух странах могут вступить в войну, которая продлится несколько миллисекунд и люди не успеют заметить, как они все будут уничтожены», - говорит футуролог Алексей Турчин.

Фантастика? Возможно, но локальная война двух компьютерных трейдеров уже однажды обрушила биржевые индексы - просто потому что боты друг за другом вдруг решили продавать акции. В результате этой виртуальной битвы совершенно конкретные люди потеряли много настоящих денег.

«Алгоритмы, которые были сделаны для того, чтобы приносить прибыль всем участникам, вдруг начали работать так, что они начали приносить убытки всем участникам, потому что были не предусмотрены последствия работы. А очень трудно предусмотреть все последствия работы искусственного интеллекта», - поясняет Алексей Турчин.

Программисты Фейсбука тоже не предполагали, что сетевые чат-боты, или попросту разговорные агенты, пройдут тест на коммуникацию с таким результатом: диалог на английском превратился в бессмысленный набор слов, а то и букв, но это для человека - цифровому разуму язык людей показался неудобным способом договориться. Другими словами - машина может лучше. И это еще одна угроза.

«Первое, что произойдет, это то, что очень многие люди потеряют работу из-за автоматизации и роботизации производства. Так, по некоторым оценкам, в США до 2030 года из-за этого могут быть ликвидированы около 47% рабочих мест», - говорит профессор теоретической философии в университете имени Иоганна Гутенберга Томас Метцингер.

Казалось бы, все это далеко и даже не очень скоро - но и в России искусственный интеллект уже лишил кое-кого работы - виртуальная помощница Инна заменила собой справочную службу Казанского Иннополиса.

«Мы автоматизировали на 100% все рутинные обращения и вот с 19 июня этого года Инна уже обработала чуть больше 15 тысяч обращений, на которые раньше отвечал живой человек, а теперь этот механизм отвечает автоматически», - рассказывает директор по маркетинговым коммуникациям города Иннополис Артем Фатхуллин.

Инна, конечно специалист в узкой области - ей, как и любой другой программе пока очень далеко до человека - но ключевое слово именно «пока».

«100 лучших экспертов мира в области искусственного интеллекта полагают, что между 2070 и 2100 годами, а возможно, и в 2050 году появится искусственный сверхразум, который будет действовать как минимум на уровне человека, а то и недосягаемо превосходить его. Вопрос состоит в том, что если саморазвивающийся искусственный интеллект когда-либо превзойдет когнитивную силу человека, то как нам сделать так, чтобы он оставался мирным и чтобы его цели совпадали с нашими», - говорит Томас Метцингер.

Ответа на этот вопрос на самом деле до сих пор не существует - человечество тратит миллиарды на развитие искусственного разума, как будто нарочно приближая тот день, кода он поймет, что создатели ему больше не нужны.

«Я часто использую такую аналогию - когда мы, например, расширяем дом, мы не советуемся с червяками, жуками и разными насекомыми на заднем дворе, перед тем, как начать стройку. Они же настолько ниже нас, что мы просто не обращаем на них внимания. Вот какой может быть разница между искусственным интеллектом будущего и человеком», - отмечает глава футурологического института Futurizon (Великобритания) Ян Пирсон.

Кто-то, конечно, может посоветовать футурологам надеть шапочку из фольги и спрятаться под стол - но главу компании Tesla Илона Маска точно не заподозришь в технофобии - с его-то проектами SpaceX или Hyperloop и серьезными инвестициями в создание нейросетей. Но именно он уже не раз предупреждал об опасности.

«Вы знаете, что у меня есть доступ к самым последним разработкам в области искусственного интеллекта. И я думаю, что людям действительно следует озаботиться этим. Может показаться, что я поднимаю панику, но пока человечество не увидит, как роботы идут по улицам и убивают людей, они не будут знать, как реагировать. Ведь это выглядит таким нереальным, но я уверен, что нам действительно стоит волноваться насчет искусственного интеллекта», - заявил Илон Маск.

Маск предлагает регулировать развитие технологии на государственном уровне - и в то же время своего рода аппаратный апгрейд мозга - с помощью нейросетей нового поколения, выходит, чтобы не отстать от машин будущего, человеку самому придется стать машиной.

Искусственный интеллект развивается куда быстрее, чем могли предположить его создатели - нас окружают миллионы устройств, которые по вычислительным способностям значительно куда умнее человека. Теперь представьте следующий этап, когда мозг станет частью этой сети: вроде возможности открываются безграничные - не нужно учить языки, вообще любые накопленные человечеством знания легко скачать прямо в голову, но с другой стороны человек фактически становится флэшкой. Какая уж тут индивидуальность или несвойственная машинам способность мыслить нестандартно! Да и вообще любую флешку можно отформатировать…

Сейчас нам только кажется, что мы способны обрабатывать все новые потоки информации из нескольких источников сразу - в реальности человек просто теряет элементарные способности, доверившись технологиям. Машины и так уже многое делают за нас - автомобили сами паркуются, поисковики в интернете готовы ответить на любой вопрос, виртуальные помощники сами звонят нашим друзьям. Лень как двигатель прогресса. Выходит, «двое из ларца» здорово поумнели с тех пор, как человечество открыло ящик Пандоры.

Вы что это, и конфеты за меня есть будете?

Человечество пока не полетело к звёздам. Да что там говорить, оно не совершило даже пилотируемые полёты к Венере и Марсу, которые фантасты прошлого века считали делом ближайшего будущего. Но кое в чём наша цивилизация превзошла самые смелые прогнозы. Лишь немногие фантасты тридцать-сорок лет назад предвидели появление сотовой связи и интернета. И даже они не представляли, как велика будет роль этих изобретений в повседневной жизни человека.

Поступь прогресса

Электроника совершенствуется стремительно, и, вероятно, темпы её прогресса не снизятся ещё полтора-два десятилетия. Но не стоит опасаться (или надеяться), что они останутся неизменными на протяжении столетий.

Развитие технологий происходит рывками. Так, иначе машина устаревала, ещё не родившись. А потом - как отрезало. Многие самолёты, сконструированные в 1950-е, выпускают до сих пор. Ценой титанических усилий раз в 5-10 лет создают новые модели, которые чуть-чуть безопаснее, немного экономичнее, слегка комфортнее, зато в разы дороже предыдущих.

Прогресс не остановился, но темпы его замедлились до нормы. В определённый момент изделие начинает так хорошо отвечать назначению, что улучшить его сложно, да и не нужно. Взять хотя бы топор: сильно ли его усовершенствовали за последнюю тысячу лет?

Сверхзвуковые авиалайнеры «Конкорд» и Ту-144 - яркая иллюстрация «ограниченности» прогресса. Летать быстрее 800-900 км/ч пассажирскому самолёту оказалось не нужно и слишком дорого, и их вывели из эксплуатации

Сравнение мобильных устройств - телефонов, ноутбуков, планшетов, навигаторов - с топором вполне уместно. Они столь же распространены, только дороже и куда надёжнее. Последнее может показаться спорным: электроника ломается то и дело, а топор, купленный дедом, как лежал на даче, так и будет лежать в полной исправности. Но это потому, что топором пользуются редко. Если тратить на рубку дров столько же времени, сколько на разговоры по мобильнику, станет ясно - телефон-то покрепче будет.

Перспективы усовершенствования электронники необъятны. Но фантасты могут спать спокойно: принципиально цифровые друзья человека почти не изменятся, когда будет достигнут потолок целесообразности. А современный мобильный телефон уже решает большинство задач в области связи, навигации и получения информации. Конечно, лет через 20 технологии позволят сделать его в сто раз миниатюрнее и даже встроить в человеческое тело. Но принцип останется тем же.

Следует ожидать объединения разных мобильных устройств в одно, оптимизированное для постоянного ношения и использования. Оборудование карманного компьютера 19-дюймовым монитором и полноценной клавиатурой представляет собой задачу нетривиальную, но разрешимую. Можно, например, представить гибкий сенсорный экран.

Прогресс вычислительной техники огромен даже за последние пять лет. А вот современные ракеты-носители принципиально не отличаются от разработок Цандера и Королёва

Предпосылки ИИ

В прошлом футурологи опасались, что машины, вытеснив человека из сферы производства, вызовут массовую безработицу. Таким мир торжествующих технологий видел, например, в опубликованном в 1952 году романе «Механическое пианино». Пессимизмом, в сущности, проникнуты и утопии советских авторов, воображение которых рисовало картины поужаснее воннегутовской антиутопии. Предполагалось, что при коммунизме машины заменят человека всюду, где не требуется творческий подход.

К творчеству же большинство людей - давайте смотреть правде в глаза - не способны. В чём легко убедиться в наше время, поглядев в интернете на массу горе-графоманов и горе-музыкантов. Этот момент хорошо обыгран в «Сказке о тройке» : пришелец Константин работает читателем скверных стихов - должен же их хоть кто-то читать! Его труд справедливо считается тяжёлым и вредным для здоровья.

Воннегут совершил ошибку, типичную для мыслителей конца XIX - середины XX века, исходивших из идеи, что у человека есть некий «разумный» уровень потребностей. Философы не учитывали, что технический прогресс удовлетворяет потребности, им же и порождённые. Обеспечивать население персональными автомобилями или персональными компьютерами не планировалось, пока автомобили и компьютеры не были изобретены, - то есть предложение здесь рождает спрос.

Британские учёные полагают, что мозг человека, оставленный электроникой без работы, в будущем начнёт уменьшаться, постепенно сократившись до размера мозга британского учёного (кадр из « »)

Машины заменили людей у станков и на пашне, но это не вызвало массовой безработицы. Освобождённые от физического труда массы были поглощены сферами управления и обслуживания. Цивилизация вошла в постиндустриальную стадию, и вдруг стало ясно, что производство как таковое вообще не представляет собой проблему. Выпуск любого товара в любом количестве можно в любой момент организовать в любой точке Китая.

Загвоздка только в реализации продукта. Значит, главный трудяга, создающий богатство нации, - скромный менеджер, изредка поднимающий телефонную трубку и неохотно отрывающийся от жизни в соцсетях, чтобы переложить файл из одной папки в другую. И это перекладывание ныне создаёт прибавочную стоимость, за которую менеджеру платят деньги.

Технический прогресс не вызвал социальной катастрофы - можно не опасаться этого и в будущем. Даже если роботы сумеют согнать с насиженных мест офисный планктон, останется ещё сфера услуг. Появятся новые специальности - хотя бы те же профессиональные читатели. Должен же кто-то принять на себя удар несущейся на человека информационной лавины? Специально обученные люди встанут на пути неконтролируемо множащихся публикаций, отбирая из тысяч те немногие, которые стоит читать (пахнет цензурой, не так ли?).

Куда важнее другой факт, ещё не осознанный, но уже свершившийся. Освободив человека от физического труда, машина начинает брать на себя и функции его мозга. Многие ли умеют сегодня умножать в столбик и грамотно писать без помощи «спеллчекера»? Впрочем, разобрать каракули, написанные на бумаге привыкшей к клавиатуре рукой, всё равно невозможно.

Доступ к информации и её фиксация упростились до предела. Электроника не просто дополняет человеческую память - всё чаще она её заменяет. А всякая способность утрачивается без упражнения. Можно безуспешно бороться с этой тенденцией, а можно смириться с тем, что до конца века фундаментальные признаки грамотности - умение считать и писать - постигнет участь стрельбы из лука. Когда-то владеть этим икусством было необходимо, потом - полезно, потом бесполезно, но принято. Наконец стрельба превратилась в спорт. Пожалуй, лет через 50 устный счёт и чистописание включат в программу Олимпиады.

Конечно, ситуация внушает беспокойство. Вдруг потребуется помножить семь на восемь, а калькулятора не будет под рукой? Подобные сомнения наверняка терзали и австралопитека, впервые взявшего в руку камень. Привыкнешь, думал он, а потом понадобится раздробить кость, а камня нет. Но если бы австралопитек, побоявшись остаться без камня, принялся упражнять челюсти, это не только оказалось бы глупостью, но и направило бы эволюцию в совершенно иное, не ведущее к человеку разумному русло. Наша сила, грозящая вот-вот стать богоравной, - именно в нашей неспособности обойтись без орудий.

Мир меняется. Умение считать заменяется умением пользоваться калькулятором (точнее, уже компьютером). Значит, именно обращению с этим устройством следует учить. Для того же, чтобы владеть калькулятором, требуется понимать суть арифметических действий, тригонометрических функций, возведения в степень, извлечения корня, логарифма. А знать таблицу умножения - излишне.

Тест Тьюринга

Ограничится ли дело только лишь памятью и способностью к счёту? Что ещё может заменить (а значит, неизбежно заменит) искусственный интеллект? В 1950 году математик Алан Тьюринг предложил оценивать искусственный интеллект по умению программы выдать себя за человека. Если квалифицированный, специально готовившийся к испытанию экзаменатор, знающий, что один из его невидимых собеседников робот, а второй - человек, в 30% случаев ошибётся, пытаясь определить, кто есть кто, - можно считать, что машина научилась мыслить. Почему 30 процентов, а не 50, которые означали бы, что различий нет в принципе и угадать удаётся только случайно? Потому что для действительно безупречного притворства необходим некий «запас прочности», вот и всё.

Победа компьютера, обоснованно полагал Тьюринг, будет означать, что машина способна заменить человека. Робота можно посадить на телефон, и на другом конце провода никто не заметит разницы. Программа скажет то, что сказал бы человек, и даже отдаст такие же распоряжения, которые отдал бы человек на её месте.

Чемпион мира по шахматам Гарри Каспаров играет против компьютера Deep Blue в 1997 году. Каспаров проиграл, расстроился, отказался признавать результаты матча и зарёкся впредь играть с роботами

Сейчас боты вплотную подошли к преодолению барьера. Пессимисты считают, что он будет преодолён в ближайшие 15 лет, оптимисты же полагают, что успех уже пора отмечать. В августе 2012 года российская программа «Евгений» набрала на тесте 29,2%. А ведь речь идёт о состязании робота со специалистами, пытающимися разоблачить бота изощрёнными и каверзными методами.

В ближайшем будущем реальностью станет то, на что у фантастов не хватает воображения. Появятся, например, телефоны, которые сами, через неравные (чтобы пунктуальность не показалась подозрительной) промежутки времени будут обзванивать пожилых родственников хозяина, справляясь об их здоровье, терпеливо выслушивать пересказы сериалов, анализировать рост цен на гречку и вступать в полемику о воспитании пуделей. В рабочее время такой аппарат сможет вести переговоры с клиентами и лепетать оправдания, услышав в трубке начальственный голос. Обладатель которого, впрочем, в этот момент будет рубиться на том же игровом сервере, что и подчинённые, поручив имитацию руководства своему телефону.

Речь идёт лишь об имитации, не так ли? Робот продаёт морозильное оборудование, общается на форуме, причём постит страшную чушь, и его даже банят за хамство… Программа не думает, а лишь симулирует мыслительный процесс человека, просчитывая, какие решения могли бы быть приняты им в данной ситуации. Но и шахматный суперкомпьютер на самом-то деле в шахматы не играет. Он просто преобразует входящий сигнал по сложному алгоритму.

А не замахнуться ли нам…

Какая разница между «мыслит» и «не мыслит», если результат одинаков? Где граница между качественной подделкой, доступной уже сейчас, и остающимся фантастикой разумным дроидом C-3PO из кинофильма «Звёздные войны»? Теоретически разницу можно будет заметить. Например, виртуальный менеджер среднего звена, удостоверившись, что фотография на личной странице девушки отвечает критериям привлекательности, будет пытаться назначить ей свидание, не замечая, что это фотография Миллы Йовович времён «Пятого элемента». Человек такой ошибки не совершит.

Но это в теории. В реальности программа будет знать в тысячу раз больше уловок и методов их распознавания, чем живой пользователь. И уж подавно больше, чем обаятельный, но простодушный дроид. Скорее всего, бот просто взломает сервер и сверит фотографию с паспортными данными.

Для C-3PO каждый разговор с человеком - успешно пройденный тест Тьюринга. В отличие от реальных программ, робот из «Звёздных войн» разумен и обладает не только интеллектом, но и чувствами

Тем не менее разум - нечто большее, чем интеллект. Разумной можно назвать лишь машину, обладающую волей и сознанием. И как взяться за её создание, не слишком-то ясно. Не потому, что сознание - столь уж великая тайна. Просто появ ление «железа», способного потянуть такой софт, ожидается только лет через сорок. И это при сохранении прежних темпов развития электроники, на что вряд ли можно рассчитывать.

В природе программы - безусловные рефлексы - пишутся путём отбора мутаций, затрагивающих нервную систему. Это крайне непроизводительный метод, который обеспечивает приемлемые результаты лишь для видов, отличающихся плодовитостью. Именно по этой причине у позвоночных эволюция пошла другим путём. Долгоживущее существо анализирует опыт, вычленяя связи между событиями, затем сопоставляет между собой выявленные закономерности, - и так без конца. Для приобретения условных рефлексов требуется большой и свободный от «врождённого софта» мозг. Метод очень трудоёмок, но потенциально позволяет приспосабливаться к любым условиям.

Но боту не нужно накапливать и анализировать личный опыт. У него есть программист, способный научить всему сразу, а не постепенно, за миллион лет отбора. Поэтому непонятно, стоит ли в принципе браться за создание подлинного машинного разума, если проще написать программу, воспроизводящую любые реакции настоящего C-3PO на внешние раздражители. Благо они столь же предсказуемы, как и у человека. Поддерживая беседу, бот мастерски будет разыгрывать наивность, тугодумие и затруднённую речь, якобы характерные для разумных роботов. Оснащённый интеллектом, но не разумом, бот будет подконтролен - программа не взбунтуется против создателей. Она не личность и не живёт, а значит, удаляя её с диска, не придётся терзаться угрызениями совести.

При этом бот может обучаться и даже способен к творчеству. Программы уже давно пишут музыку, расставляя семь нот в порядке, соответствующем человеческим представлениям о гармонии, - живым композиторам далеко не всегда это удаётся! Боты способны даже делать изобретения, ведь всё новое - это удачная комбинация уже существующих элементов, а просчёт комбинаций - сильное место машин.

Вьетнамский робот-художник Tosy SketRobo создаёт чёрно-белые скетчи, но лишь в рамках заданной программы. Воображения робот лишён

Перспективные направления

Киборгизация

Замена человеческих органов электронными протезами - перспективное направление в трансплантологии. Как далеко может зайти слияние человека с машиной?

В будущем наверняка появится возможность производить крошечные компьютеры, пригодные для вшивания под кожу. Способность подключаться к интернету и по мысленному запросу получать из Сети любые сведения прямо в мозг, минуя органы чувств, кажется привлекательной, особенно на экзаменах. Но в достаточной ли мере человек контролирует свои мысли для того, чтобы управлять таким устройством? И даже если решить эту проблему, останется вторая: мозг не будет расценивать сигнал, поступающий не с глазного нерва, как зрительную информацию.

Знание не возникнет ниоткуда. Человеку по-прежнему придётся читать либо прослушивать текст. Не удобнее ли в таком случае по старинке пользоваться наушниками и экраном? Во всяком случае, это позволит избежать сложной и небезопасной операции по вживлению электродов в нервные волокна.

Кибертранспорт

Ещё в 1988 году автопилот поднял, свёл с орбиты и посадил космический корабль «Буран». А эта задача сложнее, чем управление автомобилем

Уже сегодня сотовый телефон умеет практически всё, но функции грядущего универсального мобильного устройства окажутся ещё шире. Почему, например, навигатор в телефоне лишь подсказывает, куда и когда следует повернуть? Если он такой умный, пусть сам и рулит.

Конечно, управление можно возложить и на бортовой компьютер автомобиля, но это явное излишество. Машине незачем двигаться без пассажира, а человек никуда не денется от своего телефона. Таким образом, один электронный интеллект в салоне присутствовать всегда будет. Для чего тогда нужен второй? Телефон можно будет объединить с автомобилем, вставил в слот - и поехал.

Автомобиль с автопилотом - не фантастика уже сегодня. Конечно, нетрудно представить себе ситуацию на дороге, с которой робот не справится. Но - будем откровенны - представить себе ситуацию, с которой не справится человек, несравненно проще.

Нанороботы

В романах «Непобедимый», «Осмотр на месте», а также в нескольких других произведениях Станислав Лем высказывает предположение, что мы неправильно строим машины. Место больших автоматов должны занять крошечные, однообразные элементы (наноботы), при необходимости образующие из своих тел любые другие конструкции. В том числе и мозг.

Только на таком принципе, кстати, можно создать встречающиеся в фантастике «экспоненциальные машины», которые расширенно воспроизводят себя без участия человека и одновременно совершают какую-то полезную работу. Автомат традиционного типа слишком сложен для размножения, так как состоит из множества деталей, для производства которых требуется разнообразное оборудование, заведомо не помещающееся внутри самой машины.

Аналогия с клетками, составляющими человеческое тело, бросается в глаза. Но, несмотря на впечатляющие успехи миниатюризации, дело не выгорит. Проблема в том, что наши роботы - твёрдые. А все процессы, протекающие в живых организмах, имеют химическую природу и происходят в растворе. Воспроизвести клетку можно, работы в этом направлении уже близки к завершению, но при этом реальная экспоненциальная машина будет просто живым существом со всеми присущими ему слабостями.

* * *

Что бы там ни воображали фантасты, восстания машин не будет. Искусственный интеллект в современном понимании - не более чем имитация. Другой вопрос, насколько реалистичной она может быть. Если робот подумает, что для людей характерно уничтожение себе подобных (а оно, к слову, характерно), он начнёт это уничтожение имитировать. И смешно не покажется. Поэтому три закона Азимова нам всё-таки пригодятся.

Одна из наших ключевых экспертиз – машинное обучение, и мы стараемся отправлять сотрудников на профильные конференции для получения новых знаний (о копенгагенской конференции Scala Days мы уже в блоге), да и просто, чтобы быть в курсе основных трендов.

Для отрасли искусственного интеллекта это особенно важно, так как здесь ландшафт меняется как нигде быстро, а количество источников информации огромно. Целью моей поездки было как раз понять, что из «горячих» тем мы сможем использовать на практике в наших проектах.

Приехал я в Нью-Йорк за день до начала мероприятия и, как оказалось, в самый разгар очередного гей-парада, поэтому все витрины магазинов, фасады зданий и символ города Empire State Building были раскрашены в цвета радужного флага. Отчасти это задало тон поездке. На следующий день, погуляв и проникнувшись духом города, я поехал регистрироваться на конференцию.

О конференции

Конференция оказалась довольно масштабной и включала около 80 выступлений, проходивших параллельно в семь потоков, поэтому очно мне удалось посетить лишь небольшую часть. Для остального пришлось ждать видеоматериалов - O’Reilly всегда их публикует на safarionlinebooks , и там же можно посмотреть видео с предыдущих конференций (правда нужна подписка).

С одной стороны, тематика конференции довольно узка: когда мы говорим «искусственный интеллект», то в 90% случаев подразумеваем глубокие нейронные сети. С другой стороны, докладчики приглашаются из совершенного разных областей, и ввиду разнообразия решаемых ими задач компания спикеров получается довольно разношерстной. На сайте конференции можно ознакомиться с ее агендой .

Говоря о представленных на конференции компаниях, можно выделить три большие группы. Первая – это вездесущие технологические гиганты вроде Google, IBM, Microsoft, Amazon и др. Вторая – молодые компании и смузи-ориентированые AI-ориентированные стартапы, в коих сейчас недостатка нет. И третья – это представители академической среды – основной поставщик новых теорий, подходов и алгоритмов. Лично на меня выступления последних, как правило, производят наибольшее впечатление.

Ввиду короткого формата выступлений (на каждую лекцию вместе с вопросами отводилось всего 45 минут) в них было очень мало математики или алгоритмов, в основном описывались общие идеи и демонстрировались примеры их применения. В целом это понятный подход, если что-то тебя заинтересовало - welcome, гугли эту тему в интернете и изучай её более подробно. Поэтому для себя я сформулировал цель посещения подобных мероприятий так – понять, какие темы на слуху и в каком направлении развивается индустрия.

К слову, за все время конференции ни в одном из выступлений я не услышал так любимый многими термин «Big Data», что, на мой взгляд, говорит о достаточно профессиональном уровне аудитории – терминология должна использоваться корректно.

Вообще, когда мы говорим «искусственный интеллект», воображение чаще всего рисует нечто подобное.

Но на самом деле ИИ - не только и столько про роботов, это гораздо шире. По сути речь идет о любой интеллектуальной системе или программе, способной в условиях большой неопределенности решать задачи, традиционно считавшиеся прерогативой человеческого интеллекта.

О глубоком обучении

Первый день организаторы отвели под мастер-классы. В основном это были туториалы по всевозможным фреймворкам глубокого обучения (deep learning), которых сегодня «на слуху» около 10 штук и которые, на мой личный взгляд, как две капли воды похожи другу на друга.

Глубокое обучение - это процесс обучения многослойных нейронных сетей, оптимизированных для работы с данными сложных иерархических форматов, и в последнее время ставший стандартным подходом для анализа текстов, изображений, аудио/видео данных и временных рядов.

Основное преимущество глубоких сетей перед другими методами машинного обучения и немногослойными сетями (shallow networks) – они избавляют от необходимости заниматься ручной генерацией фич (feature engineering), поскольку этот механизм заложен в архитектуру самой сети. Обратная сторона – такие сети требуют больше данных для обучения и для них сложнее подбирать параметры.

В глубоких сетях выделяют 2 базовых архитектуры: сверточные (CNN, Convolutional Neural Networks) и рекуррентные сети (RNN, Recurrent Neural Networks). Первые используются в основном для работы с изображениями, а вторые - для анализа текстов и любых последовательностей. Все остальные архитектуры - вариации на тему этих двух.

Чтобы аналитики не занимались реализацией низкоуровневой логики, за несколько лет появилось множество API, упрощающих разработку таких сетей и сводящих ее к конфигурации нужной архитектуры. Здесь перечислены почти все:


Я решил не мудрить и выбрал два наиболее популярных: TensorFlow и Keras.

Keras – один из наиболее высокоуровневых инструментов в этой серии, по сути являющийся Lego-конструктором. Разработка приложения сводится к выбору архитектуры сети, числа слоев, нейронов и активационных функций. Простейшие глубокие сети в Керасе собираются в 10 строк кода, что делает этот инструмент идеальным для быстрого старта или прототипирования.

TensorFlow, наоборот, один из наиболее низкоуровневых инструментов. Google его позиционирует как пакет для любых символьных вычислений, не только для глубоких сетей. На мой взгляд, одна из киллер-фич – это обалденная динамическая визуализация. Чтобы понять, о чем идет речь, можно посмотреть, например, .

TensorFlow является основной технологией для огромного числа AI-проектов и помимо Гугла используется в IBM, SAP, Intel и много где еще. Важный его плюс – большой репозиторий готовых к использованию моделей.

Второй и третий дни были отведены под лекции. После утренней обзорной сессии с короткими десятиминутными выступлениями о достижениях индустрии, шел блок из 6 лекций.

Deep Learning в банках

Мне всегда была интересна тематика применения глубоких сетей не для очевидных картинок и текста, а для более «традиционных» структурированных данных, поэтому первой лекцией я выбрал рассказ Эрика Грина из Wells Fargo AI Labs об анализе транзакционных данных в банках.

«Продвинутные» банки давно делают глубокую аналитику для прогнозирования будущих транзакций, сегментации, выявления мошенничества и т.д., но пока мало кто может похвастаться работающим решением на базе глубоких сетей.

Идея предложенного подхода очень простая – сначала история транзакций записывается в неком структурированном формате, после этого каждый атрибут транзакции кодируется определенным числом (word embedding), а затем к получившимся векторам применяются глубокие сети (CNN или RNN). Такой механизм универсален и позволяет решать как задачу классификации, так и задачи прогнозирования и кластеризации транзакций. К сожалению, с точки зрения подачи материала лекция оказалась довольно слабой, и у автора выудить детали по качеству данного решения не удалось.

Зато следующий рассказ о совместном проекте Teradata и датского Danske Bank по внедрению антифрод-решения на базе глубокого обучения получился куда лучше. Задача была повысить качество обнаружения мошеннических транзакций. Ребята описывали довольно интересное решение, связанное с представлением транзакций в виде «псевдокартинки» и последующим применением сверточной нейронной сети.

Ниже приведен пример такой псевдокартинки, где по горизонтали отложены атрибуты транзакции, а по вертикали моменты времени. Кроме того, вокруг каждого атрибута (выделены светло-синим) по часовой стрелке отложены наиболее коррелированные с ним атрибуты. Такое представление позволяет легко находить аномальные паттерны в поведении клиентов.


Если верить их цифрам, по качеству это решение оставило далеко позади даже всеми любимый градиентный бустинг. Я не всегда доверяю цифрам в презентациях, но даже если качество сопоставимо, это очень интересный результат. Я планирую обязательно попробовать данный подход где-нибудь в наших задачах.

Правда на вопрос «Как такое решение будет проходить европейские требования GDPR по интерпретируемости модели» ребята так и не ответили. Будь он задан мне, я бы отослал к такой замечатльной штуке как LIME - интерпретатору сложных нелинейных моделей.

Дальше я пошел на панельную дискуссию с тремя девушками, владельцами AI-ориентированных стартапов. Дискуссия была о том, как выстроить эффективный бизнес в сфере AI. По факту сессия оказалась самой бесполезной: несмотря на обещанный «no fluff» в названии, никаких секретов раскрыто не было, а «общие» вопросы чередовались «общими» ответами. Единственное, что запомнилось из лекции, это выступавшая там девушка с необычным именем Коко (по совместительству профессор MIT).

Что там в Amazon

Далее меня заинтересовала лекция от Amazon про фреймворк распределенного глубокого обучения Apache MXNet . Я рассчитывал на мини-туториал по данному фреймворку, но по факту 90% рассказа были посвящены рекламе сервисов Amazon, а в оставшиеся 10% MxNet была упомянута просто как основная платформа для глубокого обучения, использующаяся во всех сервисах Амазона.

Среди достижений народного хозяйства компании были представлены:

  • голосовой помощник Alexa ,
  • телепомощник Amazon Show - вариант Alexa с камерой и дисплеем,
  • Amazon X-Ray – встроенный в видеоплеер помощник, который по стопкадру может показать биографию актера, а также вывести информацию о сюжете и персонаже,
  • а также Amazon - магазин без кассовых аппаратов (мечта гопника) – просто набираешь продукты в корзину и идешь на выход, магазин сам определяет состав продуктов в корзине и списывает деньги со счета. Магазин сейчас работает в beta-режиме (только для сотрудников).


Во всех перечисленных выше проектах в том или ином виде используется глубокое обучение и, в частности, фреймворк Apache MxNet.

«Железная» логика

Далее выступал представитель Numenta – компании, которая занимается разработкой систем, моделирующих работу Неокортекса (части мозга человека, отвечающей за высокоуровневую интеллектуальную деятельность и обучение). Идея – построить обучающиеся структуры, более близкие по своей архитектуре мозгу человека, чем сегодняшние нейронные сети. В основе лежит теория иерерархической темпоральной памяти (Hierarchical Temporal Memory), которая описывается в книге Джефа Хокинса 2004 года «Об интеллекте». Собственно, он же и основал компанию Numenta.

Сами авторы позиционируют свой проект как исследовательский и, несмотря на то, что алгоритм может решать разные задачи, пока нет результатов, подтверждающих, что подход работает лучше традиционных глубоких нейронных сетей. У выступавшего Мэта Тейлора есть канал на YouTube (HTMSchool), но он мне, честно говоря, не понравился и для ознакомления я бы рекомендовал все-таки печатные материалы.

Тема «железа» (AI acceleration) на конференции поднималась достаточно часто. Многие компании занимаются разработкой высокопроизводительных вычислительных комплексов, оптимизированных специально под обучение нейронных сетей. Известные примеры это процессоры Google TPU (tensor processing units), GPU дата-центры от Nvidia, или созданный в 2014 году компьютер TrueNorth от IBM, своей архитектурой повторяющий модель неокортекса. С ростом объемов данных скорость обучения становится важным конкурентным преимуществом.

Когда роботы захватят людей

Далее был интересный доклад Кэти Джордж из McKinsey о потенциале автоматизируемости профессий. Частично о результатах можно почитать на McKinsey (к сожалению, в виде единой pdf у них не нашел).

Каждую профессию они рассматривали как комбинацию определенных действий и смотрели, какой процент этих действий может быть автоматизирован с учетом текущих технологий. Результаты меня удивили! Несмотря на то, что потенциал для автоматизации есть почти во всех профессиях, полностью автоматизированы могут быть всего 5% позиций. Что немножко расходится с популярной риторикой о том, что через год роботы поработят всех юристов (или как там было...).

Наибольшим потенциалом обладает предсказываемая физическая деятельность – это те же конвейеры на производстве, а также сбор и хранение данных, наименьшим – непредсказуемая физическая активность – например, игра в футбол (впрочем, насчет непредсказуемости болельщики сборной России могут поспорить).

Любопытно, что зависимость автоматизируемости от оплаты труда имеет форму треугольника – высокооплачиваемые профессии мало автоматизируются, а вот среди низкооплачиваемых разброс намного больше.

Интересно, что если смотреть потенциал по разным индустриям, то на первое место авторы поставили горячо любимую в нашей компании задачу персонализированного маркетинга (personalized advertizing).

День второй

Если глубокая аналитика давно перестала быть чисто академической дисциплиной и стала вполне себе прикладной (любой ларек с шаурмой умеет строить модели), то в области искусственного интеллекта дела обстоят чуть по-другому. Область активно развивается, и люди пытаются находить все новые точки применения, среди которых есть и абсолютно бесполезные с практической точки зрения.

Генерация искусства

Даг Эк из Google рассказывал о проекте Google Magenta – открытом репозитории моделей для создания музыки и рисунков.

Затем был рассказ про сеть sketch-RNN, электронного художника, работающего на базе автоэнкодера и умеющего перерисовывать нарисованные от руки картинки и символы.

Автоэнкодер – сеть, сначала переводящая картинку в некое сжатое представление, а затем восстанавливающая его изначальную размерность. Таким образом, сеть работает как высокочастотный фильтр и способна убирать шум с картинки (шум в широком смысле, например, недорисованный ус).


Слева – котэ, нарисованный человеком, а справа - сгенерированный машиной образ.

Понять, где рисует машина, где человек – невозможно. В целом, становится все больше областей, где машины проходят тест Тьюринга (тест Тьюринга не обязательно формулируется для диалоговых систем, это может быть, например, распознавание или генерация картинок).

Авторы сами признаются, что конкретной цели у проекта нет, но это нормально, если вспомнить, что многие выдающиеся изобретения были разработаны безо всякой цели. По крайней мере, для рынка поп-музыки потенциал, мне кажется, очевиден.

Покер и теория игр

Другое известное применение искусственного интеллекта – это соревнование с человеком в азартных (и не очень) играх. Томас Сендхолм из Carnegie-Melon University рассказывал об игре в покер. Все знают, что машина давно обыгрывает человека в шахматы, слышали про недавнюю победу в Go, но выигрыш искусственного интеллекта в покерном турнире в этом году не получил большой огласки.

В теории игр игра с неполной информацией – та, в которой игрок не видит карт соперника. Из-за этого на каждом шаге ему приходится иметь дело не с детерминированным деревом игры, а с вероятностями и их матожиданием. Такие игры сложнее, так как необходимо просчитывать большее количество комбинаций. Решить игру означает найти оптимальную стратегию. Если упрощенные версии покера с помощью брут-форса были решены относительно давно, то более сложный вариант noLimit texas Holdem содержит 10^161 (больше числа атомов во Вселенной) вариантов игры, и прямое решение здесь невозможно.

Для решения использовался мощный суперкомпьютер, в реальном времени обрабатывающий поступающую информацию от игрового стола (Libratus), а в качестве математического алгоритма метод Monte-Carlo Counterfactual Regret Minimization.

Турнир я не видел, но говорят, вопреки ожиданиям AI играл довольно «тайтово», делал большие ставки, «давил банком» и брал «на понт».


Для индустрии азартных игр это означает перспективу роботизации, сравнимую с роботизацией рынка ценных бумаг.

Беспилотные авто

Одна из топовых тем, имеющих отношение к искусственному интеллекту, – это, конечно, беспилотные авто. Она не только популярна, но еще и весьма «широка». Разработчики таких машин вынуждены иметь дело не только с технологиями компьютерного зрения, но еще и с теорией оптимального управления, многочисленными системами позиционирования и решать множество прогностических задач. Не так сложно научить машину распознавать сцену и поворачивать руль в нужном направлении. Гораздо сложнее создать полностью автономного агента, способного безопасно передвигаться в потоке вместе с обычными водителями и координировать с ними свои действия.

Анка Драган из Berkley рассказывала о проблемах поведения беспилотных авто на дорогах. Для «затравки» было приведено два примера.

Первый пример: в штатах тестируемая гугломашина простояла два часа на перекрестке, пропуская другие машины, поскольку не могла вклиниться в поток. Вторым примером было показано видео а-ля телепередача «Водить по-русски», в котором где-то на просторах Миннесоты грузовик не дает перестроиться машине в свой ряд и «отжимает» легковушку обратно.

Сейчас разрабатываемые беспилотники воспринимают другие машины как препятствия, от которых нужно держаться подальше: если робот видит, что машина не уступает дорогу, он не будет к ней соваться. Но такая модель поведения (defensive behavior) будет крайне неэффективной: на перекрестке такие беспилотники могут пропускать другие машины до бесконечности, а на дороге не смогут даже перестроиться на съезд.

С другой стороны, как показывает второй пример, рассчитывать на разумное поведение водителей тоже нельзя. Отсюда и одно из главных опасений – сумеет ли беспилотник правильно повести себя в нестандартных ситуациях. Поэтому авторы предлагают при разработке использовать некий сбалансированный подход – начинать маневр, исследовать реакцию водителя, и в зависимости от нее корректировать свои действия.

Про Doom, или что еще умеют глубокие сети

Далее была лекция Руслана Салахутдинова из Carnegie-Melon University и Apple с обзором возможностей глубокого обучения для решения различных задач. С точки зрения подачи материала, на мой взгляд, это была одна из лучших лекций. Вообще, интересующимся глубоким обучением рекомендую ознакомиться с лекциями данного товарища, коих в интернете достаточно (например, ). Приведу несколько примеров.

За последние несколько лет глубокие сети совершили прорыв, не только количественный, но и качественный – начали появляться новые задачи, комбинирующие визуальную и текстовую аналитику. Если 2-3 года назад сети умели только классифицировать тематику картинки, то теперь они легко могут дать словесное описание всей сцены на естественном языке (задача caption generation).

Кроме того, подобные системы умеют явно выделять на картинке объекты, соответствующие каждому отдельному слову из описания (так называемые Visual Attention Networks).

Основной вектор развития рекуррентных сетей связан с переходом к более совершенным механизмам запоминания контекста. В свое время в сфере рекуррентных сетей подобный прорыв совершили LSTM (long short-term memory) сети. Сейчас также разрабатываются сети с разными моделями памяти и один из таких вариантов - это сети MAGE, memory as acyclic graph enconding, способные моделировать долговременные ассоциации в тексте.

Или совсем поражающая воображение штука - сети с динамической памятью (Dynamic Memory Networks), которые не просто анализируют картинки или текст, но еще умеют отвечать на любой заданный вопрос касательно этой картинки или текста.

Далее был интересный блок про обучение с подкреплением (reinforcment learning). С появлением глубокого обучения данный подход получил всплекс интереса. Новые алгоритмы также пытаются задействовать механизм памяти.

В двух словах, Reinforcment Learning – это обучение оптимальному поведению. Какие-то действия системы поощряются, какие-то штрафуются, и задача системы научиться правильно действовать. Основное отличие от обучения с учителем в том, что система получает поощрение не при каждом действии, а довольно редко, поэтому она должна самостоятельно выстраивать весьма сложные стратегии поведения.

Для обучения с подкреплением идеально подходит виртуальная среда, в частности компьютерные игры. Она позволяет создавать бесконечное количество экспериментов, давая возможность без ограничений обучаться алгоритму, что невозможно сделать в реальности.

Результат работы традиционного RL (без памяти) был продемонстрирован на примере игры Doom. Для обучения использовались несколько классических карт. За найденный ключ или убитого врага следовало поощрение, а например, за падение в лаву – наказание. Если на первых итерациях обучения бот упирался лбом в стену, то спустя 8 часов обучения, он с полоборота сносил игроков так, что те не успевали ничего понять. Система отлично обобщала получаемые знания и одинаково хорошо играла как на старых, так и на новых картах.

Если для шутеров классический RL вполне подходит, то для более сложных игр с логическими заданиями уже требуется запоминание контекста, т.е. наличие памяти. Для этого был разработан класс алгоритмов Reinforcment Learning with Structured Memory.

Про компьютерное зрение

Исторически самое первое применение глубоких сетей – это анализ изображений. Лекция от Microsoft была посвящена технологиям компьютерного зрения. Тимоти Хейзен выделил четыре основные задачи:
  • классификацию изображений,
  • поиск объектов на картинке (object detection),
  • сегментацию - выделение связных областей,
  • определение схожести.

Если до 2012 года бал правили традиционные подходы, когда генерация фичей для обучения модели выполнялась вручную (HOG, SIFT и прочее), то в 2012 году прорыв в качестве распознавания совершила глубокая нейронная сеть AlexNet. В дальнейшем глубокие архитектуры стали стандартом.

В области компьютерного зрения бенчмарком является конкурс ImageNet , на котором тестируются все новые архитектуры. В 2016 году первое место заняла сеть от Microsoft ResNet, содержащая больше 150 слоев. На картинке ниже приведено сравнение точности известных сверточных сетей. Тенденнция к увеличению количества слоев на лицо, однако вместе с ней актуальной становится проблема «убывающего градиента» - обучать такие сети все сложнее. Можно предположить, что дальнейшие улучшения будут связаны с изменением архитектуры сетей, а не в увеличении числа слоев.

В качестве примера приводилось четыре любопытных проекта, которые Microsoft делал в качестве консультантов.

  • Трекинг передвижения снежных леопардов в условиях дикой природы (подробнее )
  • Умный холодильник – когда заканчивается пиво, он отправляет владельцу срочную смску с предупреждением или сам делает заказ в магазине.
  • Распознавание аэрофотоснимков для анализа развития территорий ().
  • Избитая идея для Fashion-стартапа, когда по картинке определяется, что надето на человеке, и ищется максимально похожая одежда в ближайших магазинах. Кстати, если кому-то интересно, есть открытый датасет со шмотками.
Разумеется, не обошлось без рекламы двух своих продуктов: Cognitive Toolkit (CNTK) и Custom Vision – облачного сервиса для классификации изображений.

Я решил протестировать функционал Custom Vision и попробовал научить бинарную модель классификации отличать хипстеров от гопников. Для этого загрузил около 1000 изображений, из поиска Google Images. Никакой предобработки не делал, загружал как есть.

Модель обучалась несколько минут и в целом результаты получились неплохие (Precision: 78%, Recall: 89%). Да и на новых примерах классификатор работает корректно (см. ниже).

Антихайп

Интересно, что на конференции много докладов было связано с развенчанием мифов. Поскольку тема хайповая, пишут о ней много и не всегда по делу.

Очень часто звучала такая мысль: существующие сегодня нейронные сети нельзя назвать полноценным интеллектом. Пока это лишь его очень грубая модель, частично обладающая свойством обучаемости, но очень плохо обобщающая и лишенная того, что называют «common sense». Многие спикеры сходились в том, что для разработки действительно «умного» интеллекта потребуется не один десяток лет. Пока что мы даже толком не знаем, как работает мозг, не говоря уже о том, чтобы создать его полноценный искусственный аналог.

Сегодня не существует однозначного определения понятия «искусственный интеллект», но большинство экспертов сходится, что такой интеллект должен обладать набором базовых способностей, присущих человеческому, в частности умением:

  • обучаться,
  • планировать и решать поставленные задачи,
  • обобщать,
  • коммуницировать с людьми.
Определенных успехов мы добились, пожалуй, только в способности обучения, а все остальное остается на очень базовом уровне. Потенциал развития искусственного интеллекта в ближайшие годы видится как раз в развитии этих характеристик.

Про One-shot Learning и Transfer Learing

Обучение с учителем – стандартный подход сегодня, однако он все чаще критикуется. Несколько раз звучала интересная мысль о том, что будущее машинного обучения за обучением без учителя, или по крайней мере роль учителя будет уменьшаться.

Ведь чтобы понять, что не стоит совать пальцы в розетку, человеку в отличие от нейросети не нужно 10 тысяч раз повторять этот опыт, и обычно он запоминает с первого (хотя не все, конечно). Помимо базовых инстинктов человек обладает неким здравым смыслом, предобученной базой знаний, которая позволяет ему легко делать обобщения. Есть гипотеза, что она заложена в сформировавшийся за годы эволюции неокортекс – присущую только высшим млекопитающим часть мозга, отвечающую за обучение.

Поэтому одно из направлений развития ИИ, которым сейчас активно занимается сообщество, – продвижение подхода One-shot Learning – вида обучения, при котором алгоритм способен делать обобщения, анализируя очень небольшое количество обучающих кейсов (в идеале один). В перспективе машины при принятии решения должны будут моделировать возможные ситуации, а не просто повторять решение на основе опыта. Способность обобщать – неотъемлемая черта любого интеллекта.

Чтобы проиллюстрировать сказанное, найдите в двух наборах ниже объекты, аналогичные выделенным. В отличие от компьютерной программы, человек, как правило, довольно легко справляется с этой задачей.

Еще одна близкая тема – это использование так называемого Transfer Learning – модели обучения, при которой предварительно обучается некая универсальная «грубая» модель, а затем для решения более специфических задач она дообучается уже на новых данных. Главное преимущество в том, что процесс обучения в этом случае выполняется в разы быстрее.

Чаще этот термин употребляется в контексте компьютерного зрения, но на самом деле идея легко обобщается на любые задачи ИИ. В качестве примера – многочисленные предобученные сети для распознавания изображений от Google или Microsoft. Эти сети натренированы распознавать базовые элементы изображения, для решения же конкретных задач необходимо дообучить всего несколько выходных слоев такой сети.

Вместо заключения

В целом поездка оказалась весьма поучительной и дала немало пищи для размышлений. Всегда приятно оказаться в компании профессионалов, которые занимаются примерно тем же, что и ты. Резюмировать мои впечатления от конференции, наверное, можно так: несмотря на то, что до создания настоящего искусственного интеллекта человечеству еще далеко, тема сегодня развивается семимильными шагами и находит все новые точки приложения в совешенно разных и порой неожиданных областях. Технологии, которые пару лет назад считались экзотикой, постепенно становятся новым стандартом.

Следующая конференция данной серии планируется в апреле 2018 года.

Теги:

  • искусственный интеллект
  • O’Reilly
  • Strata Artificial Intelligence
  • CleverDATA
Добавить метки
Статьи по теме: