Энергия гиббса в чем измеряется. Уравнение гиббса

Энтропия

При выяснении природы самопроизвольного протекания процессов /без воздействия из вне/ было установлено, что самопроизвольные реакции сопровождаются экзотермическим эффектом (ΔΗ < 0), и чем он больше, тем выше химическое сродство реагентов друг к другу. Однако для определения самопроизвольного протекания процесса недостаточно найти энтальпийный фактор.

Поэтому другим фактором определения самопроизвольного протекания процессов является термодинамическая функция называемая энтропией системы (S). Энтропия является мерой неупорядоченности состояния системы. Чем меньше упорядоченность системы, тем выше энтропия системы. Единицей измерения энтропии является Дж/моль·°К. Значения энтропии различных веществ в стандартных условиях (S°) приведены в таблицах термодинамических величин (см. приложение, табл.3). В ходе химической реакции энтропия системы изменяется. Это изменение называется энтропией реакции. Все процессы, которые протекают с уменьшением порядка в расположении частиц системы (растворение кристаллов, плавление и др.) сопровождаются увеличением энтропии /ΔS > 0/. И наоборот (кристаллизация, конденсация и др.) сопровождаются уменьшением энтропии /ΔS < 0/.

Энтропию реакции рассчитывают по следствию закона Гесса:

ΔS р = Σ (n · S) прод. – Σ (n · S) исх.

N 2/г/ + О 2/г/ = 2NО /г/

Число молей,(n): 1 1 2

S° 298 (из таблицы): 200 205 211

ΔS° р = 2 · (211) - = 7 Дж/ моль·К.

Так как ΔS° р >0, то данный процесс идет с уменьшением упорядоченности системы.

В отличие от других термодинамических функций, можно определить не только изменения, но и абсолютное значение энтропии. Согласно третьему закону термодинамики «при абсолютном нуле энтропия идеального кристалла равна нулю».

Величина энтропии возрастает с ростом температуры. Неупорядоченность увеличивается при переходе вещества из твёрдого состояния в жидкое, особенно резко возрастает энтропия при переходе из жидкого в газообразное состояние.

Например: ∆S 0 298 Н 2 О тв = 39,3 Дж/моль·°К..,

∆S 0 298 Н 2 О ж = 70,0 Дж/моль·°К, S 0 298 Н 2 О газ = 188,9 Дж/моль·°К.

∆S 0 298 Н 2 О тв < ∆S 0 298 Н 2 О ж < S 0 298 Н 2 О газ

Согласно второму закону термодинамики “в замкнутой /изолированной/ системе самопроизвольно идут процессы, приводящие к росту энтропии, либо без изменения энтропии /ΔS ≥ 0/.

Для процессов протекающих в изобарно-изотермических условиях движущей силой процесса является либо стремление системы перейти в состояние с наименьшей энтальпией /энтальпийный фактор/, либо увеличение энтропии системы /энтропийный фактор/.



Наиболее устойчивое состояние системы соответствует равенству энтальпийного и энтропийного факторов:

ΔΗ = Т·ΔS

Термодинамическая функция, связывающая энтальпию и энтропию системы и показывающая насколько система в данном состоянии отклонилась от равновесного состояния называется энергией Гиббса. Абсолютное значение энергии Гиббса системы определить невозможно и рассчитывают изменение энергии Гиббса /ΔG/. Отсюда следует:

ΔG = ΔН – Т ·ΔS

Стандартные значения изменений энергии Гиббса (ΔG° 298) приведены в таблицах термодинамических величин (см. приложение, табл.3). Единицей измерения энергии Гиббса является Дж/моль. Значение энергии Гиббса является критерием самопроизвольности протекания процессов:

при ΔG < 0 /реально меньше –2/ процесс идет самопроизвольно;

при ΔG = 0 /реально от 0 до –2/ состояние равновесия;

при ΔG > 0 процесс самопроизвольно не идет.

Энергией Гиббса образования вещества (по аналогии с энтальпией) называют энергию Гиббса реакции образования одного моля этого вещества из простых веществ. Энергия Гиббса образования простых веществ принимается равной нулю, если их агрегатное состояние и модификации при стандартных условиях устойчивы.

Энергия Гиббса реакции в стандартных условиях может быть рассчитана по следствию закона Гесса (по аналогии с энтальпией):

ΔG р = Σ (n · ΔG) прод. – Σ (n · ΔG) исх.

СО 2/г/ + С /графит/ = 2СО /г/

Число молей,(n) 1 1 2

ΔG° 298 (из таблицы) -394 0 -137

ΔG° Р = 2 · (-137) - = +120 кДж.

Так как ΔG° Р >0, то в денных условиях процесс самопроизвольно не идет.

Чем больше отрицательная величина ΔG, тем больше реакционная способность веществ (химическое сродство).

Однако стандартная энергия Гиббса химической реакции не может быть критерием направления протекания реакции в условиях, отличных от стандартных.

Определяя ΔН° 298 и ΔS° 298 находим:

а) При 298°К по формуле ΔG р = Σ (n · ΔG) прод. – Σ (n · ΔG) исх. = +5,0 кДж, т.е. равновесие смещено в сторону образования N 2 О 4 , т.к. ΔG > 0, процесс самопроизвольно не идет;

б) При 373°К рассчитываем значения ΔН и ΔS для реакции в стандартных условиях (ΔΗ р = Σ(n ΔΗ) прод. – Σ(n ΔΗ) исх. ΔS р = Σ (n · S) прод. – Σ (n · S) исх.), а затем с учетом температуры подставляем значения ΔН и ΔS в уравнение ΔG = ΔН – Т ·ΔS:

ΔG° 373 = +57 – 373 · 0,176 = -9,0 кДж, т.е. равновесие смещено в сторону образования NО 2 , т.к. ΔG < 0, при температуре 373°К процесс начинает протекать самопроизвольно.

Это величина, которая показывает уровень изменения энергии в процессе химической реакции, и в результате дающая ответ на вопрос о возможности протекания химических реакций. Такой потенциал можно принимать за полную химическую энергию системы (жидкости, кристалла и т. д.). Свободная энергия Гиббса широко применяется в химии и термодинамике.

Самопроизвольное протекание определено следующими факторами: энтальпийным и энтропийным. Первый связан с уменьшением энтальпии системы, а второй обусловлен увеличением уровня беспорядка внутри системы вследствие повышения ее энтропии. Разность описанных термодинамических факторов и является функцией состояний системы, которая известна как изобарно-изотермический потенциал, или свободная энергия Гиббса (G, кДж).

Самопроизвольность протекания процесса в системе открытого и закрытого типа описывается специальным критерием, получившим название потенциал Гиббса. По сути, он представляет собой функцию состояния. Д. У. Гиббс, когда работал с термодинамическими системами, вывел эту функцию через энтальпию и энтропию. Свободная энергия Гиббса позволяет предсказывать направление протекания самопроизвольного биологического процесса, а также оценивать его теоретически достижимый коэффициент полезного действия.

Применительно ко второму выводы Гиббса можно сформулировать следующим образом: при постоянных значениях давления и температуры без воздействия извне система будет поддерживать уровень самопроизвольного протекания только для процессов, вследствие которых произойдет уменьшение значения потенциала Гиббса до уровня, который наступит по достижении ним установившегося минимума. Итак, системы определяет неизменность свободной энергии. Поэтому потенциал Гиббса представляет собой свободную энтальпию в изобарно-изотермической системе. Поясним, почему указывается именно минимум. Это объясняется важнейшим постулатом равновесия в термодинамике, а именно: данное состояние при условии постоянного давления и температуры означает, что для следующего изменения требуется увеличивать уровень энергии, а это возможно только при изменении внешних факторов.

А что же понимают под свободной энергией? Под этим термином подразумевают процесс получения неограниченного количества энергии без или с незначительными затратами энергии. То есть энергия, полученная от гидроэлектростанции, ветрогенератора, - это свободная энергия, потому как мы не тратили энергию на то, чтобы солнечные лучи падали на землю, вода в реке текла или дул ветер. Подобных источников вокруг нас существует огромное множество, большинство из них еще неизвестны науке. Вот на них время от времени и «натыкаются» разные изобретатели-экспериментаторы. Одним из таких изобретений стала свободная энергия Тесла. Как считал ученый, энергия, которую он получал, брала свое начало из эфира (вакуума). Жаль, что его изобретение так и не было доведено до логического конца. Однако подобные открытия продолжают совершаться, этот процесс не остановить. На сегодняшний день существует множество патентов на изобретения, основа которых - свободная энергия. Схема одного из таких устройств приведена выше.

Методические указания и задания к контрольной работе по химии: Закономерности химических процессов.

I. Методические указания.

Общие положения.

Закономерности химических процессов являются предметом изучения двух разделов хи­мии: химической термодинамики и химической кинетики.

Химическая термодинамика изучает энергетические эффекты реакций, их направ­ление и пределы самопроизвольного протекания.

Объект изучения в химической термодинамике - термодинамическая система (в дальнейшем просто система) - это совокупность взаимодействующих веществ, мысленно или реально обособленная от окружающей среды.

Система может находиться в различных состояниях. Состояние системы определяется численными значениями термодинамических параметров: температуры, давления, концен­траций веществ и пр. При изменении значения хотя бы одного из термодинамических параметров, например, температуры происходит изменение состояния системы. Изменение состояния системы называется термодинамическим процессом или просто процессом.

Процессы могут протекать с различными скоростями. Изучением скоростей процессов и факторов, влияющих на них, занимается раздел химии, называемый химической кинетикой.

В зависимости от условий перехода системы из одного состояния в другое, в химической термодинамике различают несколько типов процессов, простейшими из которых являются изо­термический, протекающий при постоянной температуре (Т=соnst), изобарный, протекающий при постоянном давлении (р=соnst), изохорный, протекающий при постоянном объёме (V=соnst) и адиабатический, который осуществляется без обмена теплотой между системой и окружающей средой (q=соnst). Наиболее часто в химической термодинамике реакции рассматриваются как изобарно-изотермические (р=соnst, Т==соnst) или изохорно-изотермические (V=соnst, Т==соnst) процессы.

Чаще всего в химической термодинамике рассматриваются реакции, притекающие в стандартных условиях, т.е. при стандартной температуре и стандартном состоянии всех веществ. В качестве стандартной принята температура 298К. Стандартным состоянием вещества является его состояние при давлении 101,3 кПа. Если вещество находится в растворе, за стан­дартное принимается его состояние при концентрации 1 моль/л.

Предметом рассмотрения химической термодинамики являются процессы. Для ха­рактеристики процессов химическая термодинамика оперирует особыми величинами, называе­мыми функциями состояния: U - внутренняя энергия. Н - энтальпия, S - энтропия, G - энергия Гиббса и F - энергия Гельмгольца. Количественными характеристиками любого процесса являются изменения функций состояния, которые и определяются методами химической термодинамики: rU, rH, rS, rG, rF.

2. Термохимические расчёты.

(Задачи №№1-20)

Термохимический расчёт заключается в определении теплового эффекта реакции (теплоты реакции). Теплотой реакции, называется количество выделенной или поглощённой теплоты q. Если в ходе реакции теплота выделяется, такая реакция называется экзотермической, если теплота, поглощается, реакция называется эндотермической.

Численное значение теплоты реакции зависит от способа её проведения. В изохорном процессе, проводимом при V=соnst, теплота реакции qv = rU, в изобарном процессе при
р =
соnst тепловой эффект qp = rH. Таким образом, термохимический расчёт заключается в определении величины изменения или внутренней энергии, или энтальпии в ходе реакции. Поскольку подавляющее большинство реакций протекает в изобарных условиях (например, это все реакции в открытых сосудах, протекающие под атмосферным давлением), при проведении термохимических расчётов практически всегда производится расчёт rН. Если rН < 0, то реакция экзотермическая, если же rН > 0, то реакция эндотермическая.

Термохимические расчёты производятся, используя следствие из закона Гесса: тепловой эффект реакции равен сумме теплот (энтальпий) образования продуктов реакции за вычетом суммы теплот (энтальпий) образования реагентов.

Запишем в общем виде уравнение реакции: аА + bВ = сС + dD. Согласно следствию из закона Гесса теплота реакции определяется по формуле:

rН = (c rН обр, С + d rН обр, D) - (а rН обр,А + b rН обр,В) (2.1)

гдеrН - теплота реакции; rН обр - теплоты (энтальпии) образования, соответственно, продуктов реакции С и D и реагентов А и В; с, d, а, b - коэффициенты в уравнении реакции, называемые стехиометрическим и коэффициентами.

Базовыми величинами в формуле (2.1) являются теплоты (энтальпии) образования реагентов и продуктов.Теплотой (энтальпией) образования соединения называется тепловой эффект реакции, в ходе которой образуется 1 моль этого соединения из простых веществ, находящихся в термодинамически устойчивых фазах и модификациях 1) . Например, теплота образования воды в парообразном состоянии равна половине теплоты реакции, выражаемой уравнением: 2Н 2 (г) + О 2 (г) = 2Н 2 О (г). Размерность теплоты образования - кДж/моль.

В термохимических расчётах теплоты реакций, как правило, определяются для стандартных условий, для которых формула (2.1) приобретает вид:

rН ° 298 = (С rН ° 298,обр,С + d rН ° 298,обр,D) - (а rН ° 298,о6р,A + b rН ° 298, обр,В) (2.2)

где rН° 298 - стандартная теплота реакции в кДж (стандартность величины указывается верхним индексом "О") при температуре 298К. а rН° 298,обр. - стандартные теплоты (энтальпии) образования соединений также при температуре 298К. Значения rН°298,обр. определены для всех соединений и являются табличными данными. 2)

Пример 2.1. Расчёт стандартного теплового эффекта реакции, выраженной уравнением: СаСО 3 (т) =СаО(т) + СО 2 (г).

В соответствии со следствием из закона Гесса записываем:

rН 0 298 = ( rН ° 298,обр,С аО + rН ° 298,обр.СО2) - rН° 298,обр,СаСО3

Подстановка в записанную формулу табличных значений стандартных теплот образования соединений приводит к следующему результату:

rН° 298 = ((-635,1) + (-393,51)) - (-1206) = 177,39 кДж.

Как видно, rН° 298 > 0, что указывает на эндотермический характер данной реакции.

В термохимии тепловые эффекты принято указывать в уравнениях реакций. Такие уравнения с обозначенным тепловым эффектом называются термохимическими.

Термохимическое уравнение рассматриваемой реакции записывается:

СаСО3(т) = СаО(т) + СО 2 (г); rН° 298 = 177,39 кДж.

Пример 2.2. Расчёт стандартной теплоты реакции выраженной уравнением :

4NH 3(г) + 5О 2 (г) = 4NO(г) + 6Н 2 О(г).

Согласно следствию из закона Гесса записываем 3) :

rН° 298 = (4rН° 298 ,обр. N О + 6rН ° 298,обр, H 2 O) - 4rН° 298 ,об, NH 3

Подставив табличные значения стандартных теплот образования соединений, представленных в формуле, получим:

rН° 298 = (4(90,37) + 6(-241,84)) - 4(-4б,19) = - 904.8 кДж.

Отрицательный знак теплоты реакции указывает на экзотермичность процесса.

Записываем термохимическое уравнение данной реакции

4NH3(г) + 5О 2 (г) = 4NO(г) + 6Н 2 О(г); rН° 298 = - 904,8 кДж

_______________________________________________________________________________

1) Состояния веществ в уравнениях реакций указываются с помощью буквенных индексов: (к) - кристаллическое, (т) - твёрдое, (ж) - жидкое, (г) - газообразное, (р) - растворённое.

2) По определению, rН° 298 ,обр. простых веществ равны нулю.

3) Н° 298 ,обр,О2 в формуле не фигурирует ввиду её равенства нулю.


Тепловой эффект в термохимическом уравнении относится к количествам веществ, обозначенным стехиометрическими коэффициентами. Так, в рассмотренном примере 2.2.запись rН° 298 = - 904,8 кДж означает, что такое количество теплоты выделяется, если взаимодействуют 4 моля NНз с 5 молями О 2 , в результате чего образуется 4 моля NO и 6 молей Н 2 О. Если же количества участников реакции будут иными, другим будет и значение теплового эффекта.

Пример 2.3. Расчёт теплоты реакции, рассмотренной в. примере 2.2., если:

а) в реакции участвуют 2 моля О 2 ;

Ь) в реакции участвуют 34г. NН з;

с) в реакции образуется 11,2л. NO.

Пусть х - неизвестное значение теплового эффекта, которое находится из следующих пропорций:

а) Решается пропорция: 2/5 = х (-904,8). Откуда х = 2(-904,8)/5 = - 361,92 кДж.

b) По массе 1 моль NH 3 равен 17г. (масса 1 моля в граммах численно равна сумме атомных масс). Следовательно, число молей NH 3 , участвующих в реакции, равно:

п = 34/17 = 2. Согласно этому составляем пропорцию: 2/4 = х/(-904,8).
Откуда х = 2(-904,8)/4
= - 452,4 кДж.

с) В соответствии с законом Авогадро, 1 моль любого газа при нормальных условиях занимает объём 22,4 литра. Поэтому число молей NO образующихся в реакции, равно:

п = 11,2/22,4 = 0,5 . Составляем пропорцию: 0,5/4 = х/(-904,8). Откуда х = 0,5(-904,8)/4 = -113,1 кДж.

Тепловые эффекты реакций конечно же зависят от условий их протекания, однако эта за­висимость выражена слабо. В интервале температур и давлений, имеющем практическое значение, изменение величины теплоты реакций, как правило, не превышает 5%. Поэтому в большинстве термохимических расчётов для любых условий величину теплоты реакции принимают равной стандартному тепловому эффекту.

Энергия Гиббса химической реакции.

(Задачи №№21-40)

Энергией Гиббса реакции называется изменение энергии Гиббса rG при протекании химической реакции. Так как энергия Гиббса системы С = Н - ТS, её изменение в процессе определяется по формуле:

rG = rН –ТrS. (3.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного протекания при постоянном давлении и температуре при р, Т=соnst). Если rG < 0, то реакция может протекать самопроизвольно, при rG > 0 самопроизвольное протекание реакции невозможно, если же rG = 0, система находится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (3.1) отдельно определяются rН и rS. При этом в большинстве случаев используется слабая зависимость величин изменения энтальпии rН и энтропии rS от условий протекания реакции, т.е. пользуются приближениями:

= rН° 298 и rS = rS° 298 . (3.2)

Стандартную теплоту реакции rН° 298 определяют, используя следствие из закона Гесса по уравнению (2.2), а стандартную энтропию реакции аА + bВ = сС + dD рассчитывают по формуле:

rS° 298 = (сS° 298, С + dS° 298, D) - (aS° 298 , А + bS° 298,B) (3.3)

где rS° 298 - табличные значения абсолютных стандартных энтропии соединений в Дж/(мольК), а rS° 298 - стандартная энтропия реакции в Дж/К.

Пример 3.1. Расчёт энергии Гиббса реакции, выраженной уравнением

4NH 3 (г) + 5О 2 (г) = 4 NO(г) + 6Н 2 О(г) при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и температуры, при которых допустимы приближения (3.2), т.е.:

rН 773 = rН ° 298 = -904.8 кДж = - 904800 Дж. (см. пример 2.2). а rS 773 = rS ° 298 . Значение стандартной энтропии реакции, рассчитанной по формуле (3.3), равно: rS° 298 =(4S° 298 , N 0 +6S° 298, H 20)- (4S° 298 , NH 3 + 5S° 298,О2)= (4 * 210,62 + 6 * 188,74) - (4 * 1O92,5 + 5 * 205,03) = 179,77Дж/К

После подстановки значений rН° 298 и rS° 298 в формулу (3.1) получаем:

rG 773 = rН773 - 773 rS 773 = Н ° 298 - 773 rS °298 =

= - 904800 – 773 * 179,77 = 1043762 Дж = - 1043,762 Кдж

Полученное отрицательное значение энергии Гиббса реакцииG 773 указывает на то, что данная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса (стандартной энергии Гиббса реакции) можно производить аналогично расчёту стандартной теплоты реакции по формуле, которая для реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

rG ° 298 = (с rG ° 298,обр,С + drG ° 298.обр, D) – (аrG ° 298.обр A + b rG° 298 ,обр,в ) (3.4)

где rG ° 298.обр - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значения) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соединения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии 4) , а rG ° 298 - стандартная энергия Гиббса реакции в кДж.

Пример 3.2. Расчёт стандартной энергии Гиббса реакции по уравнению:

4NH 3 + 5О 2 = 4 NO + 6Н 2 О

В соответствии с формулой (3. 4) записываем 5) :

rG° 298 = (4 rG° 298, NO + 6 rG° 298,.H2O) –4 rG° 29 8., NH3

После подстановки табличных значений r 298.обр получаем:

rG° 298 = (4(86, 69) + 6(-228, 76)) - 4 (-16, 64) = -184,56 кДж.

По полученному результату видно, что так же, как и в примере 3.1 , в стандартных условиях рассматриваемая реакция может протекать самопроизвольно.

По формуле (3.1) можно определить температурной диапазон самопроизвольного протекания реакции. Так как условием самопроизвольного протекания реакции является отрицательность
rG (rG < 0), определение области температур, в которой реакция может протекать самопроизвольно, сводится к решению относительно температуры неравенства (rН – ТrS) < 0.

Пример 3.3. Определение температурной области самопроизвольного протекания реакции СаО 3 (т) = СаО (т) + СО 2 (г).

Находим rН и rS:

rН = rН° 298 = 177,39 кДж = 177 390 Дж (см. пример 2.1)

rS = rS° 298 = (S° 298 . СаО + S° 298. СО 2 ) - S° 298. СО3 = (39.7+213.6) – 92.9=160.4 Дж/K

Подставляем значения rН и, rS в неравенство и решаем его относительно Т:

177390 Т * 160,4<0, или 177390 < Т * 160,4, или Т > 1106. Т.е. при всех температурах, больших 1 106К, будет обеспечиваться отрицательность rG и, следовательно, в данном температурном диапазоне будет возможным самопроизвольное протекание рассматриваемой реакции.

Химическая кинетика.

(Задачи №№41 - 60)

Как уже отмечалось, химическая кинетика - это раздел химии, изучающий скорости реакций и влияние на них различных факторов.

В гомогенном (однофазном) процессе реакция протекает во всём объёме системы и её скорость характеризуется изменением концентрации любого реагента, или любого продукта в единицу времени. Различают среднюю скоростьV ср = ±rС/rt, где rC - изменение молярной концентрации за период времени rt , и истинную скорость в момент времени t, представляющую собой производную от концентрации по времени: V = ±dС/dt. Скорость каждой конкретной реакции в отсутствие катализатора зависит от концентраций реагентов и от температуры . Скорость гетерогенных реакций, протекающих на межфазной поверхности раздела, зависит также от величины этой поверхности.

_______________________________________________________________________________________

4) Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю.

5) rG° 298, O 2 в выражении не фигурирует ввиду её равенства нулю.


Влияние концентраций реагентов на скорость реакций устанавливается законом дейст­вующих масс: при фиксированной температуре скорость реакции пропорциональна произве­дению концентраций реагентов в степенях, равных стехиометрическим коэффициентам. Для реакции аА + bВ = сС + dD математическое выражение закона действующих масс, называемое кинетическим уравнением реакции, записывается:

V = kС А а С B b (4.1)

где k - коэффициент пропорциональности, носящий название константы скорости, С A и С B - молярные концентрации реагентов, а и b - их стехиометрические коэффициенты. Сумма показателей степеней в кинетическом уравнении называется порядком реакции.

Пример 4.1. Кинетическое уравнение реакции 2Н 2 (г) + О 2 (г) = 2Н 2 О(г) записывается :

V = kС H 2 2 С О2 . Теоретический порядок данной реакции равен трём.

В кинетических уравнениях реакций концентрации веществ в конденсированном со­стоянии ввиду их неизменности не указываются. Эти постоянные концентрации в качестве составных частей входят в константу скорости.

Пример 4.2. Кинетическое уравнение гетерогенной реакции, протекающей согласно уравнению 2С(т) + О 2 (г) = 2СО(г), имеет вид: V = кС О2 - реакция первого порядка.

Согласно закону действующих масс, скорость реакции изменяется при изменении концентраций реагентов. *

Пример 4.3. Расчёт изменения скорости реакции 2Н2(г) + О 2 (г) = 2Н 2 О(г) при уменьшении концентрации водорода в 2 раза.

Согласно уравнению (4.1). начальная скорость реакции V 1 = kС H 2 2 /С О2 , а скорость реакции при концентрации водорода в 2 раза меньшей определяется соотношением:

V 2 = k(С H 2 /2) 2 С О2 - В итоге имеем V 2 /V 1 = 1/4, т.е. скорость реакции уменьшается в 4 раза.

В реакциях с участием газов изменение концентраций реагентов и, следовательно, изме­нение скорости легче всего осуществить изменением объёма системы путём изменения давления. Согласно уравнению Менделеева - Клапейрона, объём газа уменьшается, а его молярная концен­трация увеличивается во столько раз, во сколько раз увеличивается давление.

Пример 4.4. Расчёт изменения скорости реакции 2Н 2 (г) + О 2 (г) = 2Н 2 О(г) при увеличении давления в 2 раза.

Скорость реакции до увеличения давления V 1 = kС H 2 2 /С О2 - При увеличении давления в 2 раза объём системы уменьшается в 2 раза, в связи с чем концентрация каждого газа увеличивается в 2 раза и становится равной для водорода - 2 С Н2 , для кислорода - 2С О2 - В новых условиях скорость реакции будет выражаться кинетическим уравнением: V 2 = k(2С H 2) 2 2 С О2 - Отношение скоростей V 2 /V 1 = 8, т.е. в результате увеличения давления в 2 раза скорость реакции увеличивается в 8 раз.

Зависимость скорости химических реакций от температуры устанавливается правилом Вант - Гоффа: при увеличении температуры на каждые 10 градусов скорость большинства химических реакций увеличивается в 2 - 4 раза. Соответственно, при таком же уменьшении температуры скорость реакций уменьшается в такое же число раз. Математически правило Вант

Гоффа записывается:

V 2 = V 1 y (Т2 – T 1)/10 или k 2 = k 1 y (Т2 – T 1)/10 (4.2)

где V 2 и V i , k 2 , k 1 - соответственно, скорости и константы скоростей реакции при температурах Т 2 и Т 1 а у= 2 - 4 - температурный коэффициент скорости реакции.

Пример 4.5. Расчётшменения скорости реакции, температурный коэффициент которой равен 3, при уменьшении температуры на 30 градусов.

В соответствии с уравнением (4.2). отношение скоростей V 2 /V 1 = З -30/10 = 1/27. т.е. при уменьшении температуры на 30 градусов скорость реакции уменьшается в 27 раз.

Химическое равновесие.

(Задачи №№61-80)

Химическое равновесие устанавливается в обратимых реакциях - в реакциях, которые могут протекать как в прямом, так и в обратном направлении. Если реакция аА + bВ ó cC +dD) обратима, это означает, что реагенты А и В способны превращаться в продукты С и D (прямая реакция), а продукты С и D в свою очередь могут, реагируя между собой, вновь образовывать исходные вещества А и В (обратная реакция). Термодинамическим условием химического равновесия является неизменность энергии Гиббса реакции, т.е. rG = 0, а кинетическим условием равновесия - равенство скоростей прямой (V 1) и обратной (V 2) реакции: V 1 = V 2

Так как в состоянии химического равновесия и прямая, и обратная реакции протекают с одинаковыми скоростями, концентрации реагентов и продуктов во времени не изменяются. Эти не изменяющиеся во времени концентрации называются равновесными. Равновесные концентрации, в отличие от неравновесных, изменяющихся в ходе реакции, принято обозначать особым образом, а именно, формулой вещества, заключённой в квадратные скобки. Например, записи [Н 2 ], означают, что речь идёт о равновесных концентрациях водорода и аммиака.

При заданной температуре соотношение равновесных концентраций реагентов и продуктов есть величина постоянная и характерная для каждой реакции. Это соотношение количественно характеризуется величиной константы химического равновесия Кс, равной отношению произведения равновесных концентраций продуктов к произведению равновесных концентраций реагентов, возведённых в степени, равные их стехиометрическим коэффициентам. Для обратимой реакции аА+ЬВ ó cС+dD выражение Кс имеет вид:

Кс = ([С1 с [D] d)/([А] а [В] ь) (5.1)

Пример 5.1. Выражение константы химического равновесия обратимой гомогенной реакции N 2 (г)+ЗН 2 (г) ó 2NH 3 (г)

Согласно формуле (5.1) константа химического равновесия рассматриваемой реакции записывается: Кс =[ NНз] 2 / ([Н 2 ] 3).

Так же как в кинетических уравнениях реакций, в выражениях констант равновесия концентрации веществ в конденсированном состоянии, ввиду их постоянства, не записы­ваются.

Пример 5.2. Выражение константы химического равновесия гетерогенной обратимой реакции Fе 3 0 4 (т) + 4СО(г) ó ЗFе(т) + 4СО 2 (г).

Константа химического равновесия данной реакции с учётом вышеотмеченного записывается: Кс = [СО2] 4 /[СО] 4 .

Для реакций с участием газов константа химического равновесия может быть выражена не только через равновесные концентрации, но и через равновесные парциальные давления газов 6) . . В этом случае символ константы равновесия "К" индексируется не символом концентрации "с", а символом давления "р".

Пример 5.3. Константа химического равновесия гетерогенной обратимой реакции Fе 3 0 4 (т) + 4СО(г) ó ЗFе(т) + 4СО 2 (г), выраженная через равновесные парциальные давления газов в равновесной газовой смеси.

В результате замены равновесных концентраций равновесными парциальными давления­ми газов, получаем следующее выражение константы химического равновесия: Кр=Рсо 2 4 /Рсо 4 , где Рсо 2 и Рсо - соответственно, парциальные давления диоксида углерода СО 2 и.монооксида углерода СО.

Поскольку парциальное давление газа и его концентрация связаны между собой соотношением Р i =С i RТ, где Р i и С i - соответственно, парциальное давление и концентрация i-го газа, Кс и Кр, в свою очередь, связаны друг с другом простым соотношением:

Кр=Кс(RТ) r n (5.2)

где rn - разность между суммой стехиометрических коэффициентов продуктов реакции и суммой стехиометрических коэффициентов реагентов.

Пример 5.4. Взаимосвязь Кр и Кс обратимой реакции, выраженной уравнением:

N 2 (г)+ЗН 2 (г) ó 2NH 3 (г)

Записываем выражения Кр и Кс: Кр=Р NH 3 2 / Р N 2 Рн 2 3);

Так как rn = 2 - (1+3) = -2, то в соответствии с (5.2) Кр=Кс(RТ) -2 или иначе Кс=Кр(RТ) 2 .

________________________________________________________________________________

6) Парциальное давление газа в газовой смеси представляет собой часть от общего давления смеси, приходящуюся на долю данного газа.

Численное значение константы равновесия Кр легко определяются термодинамически по формуле:

rGº т = -2,З RТ lgКр (5.3)

где rGº т - стандартная энергия Гиббса реакции при температуре Т рассчитывается по формуле (3.1) или (3.4).

Формула (5.3) используется для расчёта констант равновесия реакций, протекающих с участием газов. При необходимости, используя соотношение (5.2), для такого рода реакций можно рассчитать значение Кс.

Пример 5.5. Расчёт константы равновесия реакции СаСОз(т) ó СаО(т) + СО2(г) при температуре 500°С (773К).

Так как один из участников обратимой реакции (СО 2) - газ, для расчёта константы равновесия используем формулу (5.3). Поскольку температура не является стандартной, rG 0 773 определяем по формуле (3. 1): rG 0 773 = Н° 773 – 773 rS 773 . Необходимые для определения G 0 773 значения Н є 773 и rS 773 возьмём из ранее рассмотренного примера (3.3), а именно: rН 0 773 = rН 0 298 =177390 Дж и S° 773 = rS° 298 =160,4 Дж/К. Соответственно этим значениям rG 0 773 = 177390 –773 773 160.4 =53401 Дж. Далее согласно формуле (5.3) получаем: lgКр = - rG° 773 /(2,ЗRТ) = -53401/(2,3 * 8,314 * 773) = -3,6.

Записываем выражение константы равновесия 7) и её численное значение: Кр=Рсо 2 =10 -3,6 . Столь малое значение Кр свидетельствует о том, что в рассматриваемых условиях прямая реакция практически не протекает (сопоставьте данный вывод с результатом расчёта в примере (3. 3).

Из рассмотренного примера (5.5) вытекает, что численное значение константы химиче­ского равновесия характеризует степень превращения реагентов в продукты: если Кр(Кс)>> 1, в равновесной системе преобладают продукты, те. обратимая реакция преимущественно протекает в прямом направлении и, наоборот, если Кр(Кс)<<1, более выраженной является обратная реакция и степень превращения реагентов в продукты невелика.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Одной из важнейших задач, решаемых термодинамикой, является установление принципиальной возможности (или невозможности) самопроизвольного протекания химического процесса.

Как указывалось ранее, протеканию химического процесса благоприятствует повышение энтропии системы. Повышение энтропии достигается разобщением частиц, разрывом химических связей, разрушением кристаллических решеток, растворением веществ и т.д. Однако все эти процессы неизбежно сопровождаются повышением энтальпии системы, что препятствует протеканию процесса. Очевидно, что для решения вопроса о принципиальной возможности протекания химического процесса необходимо одновременно учесть изменение и энтропии, и энтальпии системы. При постоянной температуре и давлении для этой цели используется термодинамическая функция, называемая свободной энергией Гиббса (иногда просто энергией Гиббса). Свободная энергия Гиббса (G) cвязана с энтальпией и энтропией следующим уравнением:

Изменение энергии Гиббса при переходе системы из начального состояния в конечное определяется соотношением:

ΔG = ΔH - TΔS

Поскольку уравнение справедливо для процессов, протекающих при постоянных температуре и давлении, функцию G называют изобарно-изотермическим потенциалом . В полученном уравнении величина ΔН оценивает влияние энтальпийного фактора, а величина ТΔS - энтропийного фактора на возможность протекания процесса. По своему физическому смыслу свободная энергия Гиббса - это та часть ΔН, которая при определенных условиях может быть превращена в работу, совершаемую системой против внешних сил. Остальная часть ΔН, равная ТΔS, представляет "несвободную" энергию, которая идет на повышение энтропии системы и в работу превращена быть не может. Свободная энергия Гиббса - это своеобразный потенциал, определяющий движущую силу химического процесса. Подобно физическим потенциалам (электрическому, гравитационному) энергия Гиббса уменьшается по мере самопроизвольного протекания процесса до тех пор, пока не достигнет минимального значения, после чего процесс прекратится.

Пусть в системе при постоянных давлении и температуре cамопроизвольно протекает какая-то реакция (неравновесный процесс). В этом случае ΔH < TΔS, соответственно ΔG <0. Таким образом, изменение функции Гиббса может служить критерием при определении направления протекания реакций: в изолированной или закрытой системе при постоянной температуре и давлении самопроизвольно протекают реакции, для которых изменение свободной энергии Гиббса отрицательно (ΔG < 0).



Пусть протекающая в системе реакция обратима. Тогда при заданных условиях прямая реакция принципиально осуществима, если ΔG < 0, а обратная - если ΔG > 0; при ΔG = 0 система будет находиться в состоянии равновесия. Для изолированных систем ΔН = 0, поэтому ΔG = - TΔS. Таким образом, в изолированной системе самопроизвольно протекают процессы, приводящие к повышению энтропии (второй закон термодинамики).

Поскольку в уравнение энергии Гиббса входит энтальпия системы, определить ее абсолютное значение невозможно. Для расчета изменения свободной энергии, отвечающего протеканию той или иной реакции, используют энергии Гиббса образования соединений, участвующих во взаимодействии. Энергия Гиббса образования соединения (ΔG f) - это изменение свободной энергии, соответствующее синтезу моля данного соединения из простых веществ. Энергии Гиббса образования соединений, отнесенные к стандартным условиям, называются стандартными и обозначаются символом . Значения приведены в справочной литературе; их можно также вычислить по значениям энтальпий образования и энтропий соответствующих веществ.

Пример №1. Требуется рассчитать для Fe 3 O 4 , если известна энтальпия образования этого соединения ΔН о f (Fe 3 O 4) = -1117,13 кДж/моль и энтропии железа, кислорода и Fe 3 O 4 , равные 27,15; 205,04 и 146,19 Дж/моль. К. Соответственно

(Fe 3 O 4) = (Fe 3 O 4) - T· ,

где Δ - изменение энтропии при протекании реакции: 3Fe + 2O 2 = Fe 3 O 4

Изменение энтропии рассчитывается по следующему уравнению:

Δ = (Fe 3 O 4) - =

146,19 - (3 . 27,15 + 2 . 205,04) = -345,3(Дж/моль . К);

Δ = -0,34534 кДж/моль·К

(Fe 3 O 4) = -1117,13 - 298(-0,34534) = -1014,2 (кДж/моль)

Полученный результат позволяет сделать вывод, что реакция принципиально возможна при стандартных условиях. В данном случае энтальпийный фактор благоприятствует протеканию реакции ( < 0), а энтропийный - препятствует (Т < 0), но не может увеличить до положительной величины



Поскольку G является функцией состояния, то для реакции: aA + bB = dD + eE изменение энергии Гиббса можно определить по уравнению

= Σi (пр) - Σj (реаг)

Пример №2. Оценим принципиальную возможность получения озона при взаимодействии азотной кислоты с кислородом (условия стандартные) по уравнению:

4HNO 3 (ж) + 5O 2 (г) = 4O 3 (г) + 4NO 2 (г) + 2H 2 O(ж)

Рассчитаем изменение энергии Гиббса в стандартных условиях:

= - =

4·162,78 + 4·52,29 - = 1179,82 (кДж)

Самопроизвольное протекание реакции при стандартных условиях принципиально невозможно. В то же время диоксид азота может быть окислен озоном до азотной кислоты, так как для обратной реакции значение ΔG отрицательно.

ХИМИЧЕСКАЯ КИНЕТИКА

Энергией Гиббса реакции называется изменение энергии Гиббса ΔG при протекании хими-ческой реакции. Так как энергия Гиббса системы G = Н - TS, её изменение в процессе определяется по формуле: ΔG = ΔH-TΔS (4.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного проте-канияпри постоянных давлении и температуре. Если ΔG<0, то реакция может протекать самопроиз-вольно, при ΔG>0 самопроизвольное протекание реакции невозможно, если же ΔG = 0, система на-ходится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (4.1) отдельно определяются ΔН и ΔS. При этом в практических расчётах пользуются приближениями (2.4) и (3.4).

Пример 4.1. Расчёт энергии Гиббса реакции, выраженной уравнением 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г), при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и темпе-ратуры. при которых допустимы приближения (2.4) и (3.4), т.е.

Δ Н 773 ≈ Δ Н 0 298 = - 904.8 кДж = - 904800 Дж. (см. пример 2.2),

а Δ S 773 ≈ Δ S 0 298 = 179,77 Дж/К. (см. пример 3.1).

После подстановки значений Δ H 0 298 и Δ S° 298 в формулу (4.1) получаем:

Δ G 773 = Δ H 773 -773 Δ S 773 ≈ Δ Н 0 298 -773 Δ S 0 298 = - 904800 - 773*179, 1043762 Дж = - 1043,762 кДж.

Полученное отрицательное значение энергии Гиббса реакции Δ G 773 указывает на то, что дан ная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса (стандартной энергии Гиббса реакции) можно производить аналогично расчёту стандартной теплоты реакции по фрмуле, котораядля реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

ΔG ° 298 = (cΔG ° 298,o6p,C + dΔG ° 298,o6p,D) - (aΔG 298,обрА + bΔG° 298,обр,в) (4.2)

где Δ G ° 298, o6p. - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значе-ния) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соеди-нения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стан-дартных состояниях 4 *, a Δ G° 298 - стандартная энергия Гиббса реакции в кДж.

Пример 4.2. Расчёт стандартной энергии Гиббса реакции, протекающей по уравнению: 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г).


В соответствии с формулой (4.2) записываем:

Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю.

ΔG 0 298 O 2 в выражении не фигурирует ввиду ее равенства нулю

ΔG 0 298 = (4 ΔG 0 298 . no + 6 ΔG 0 298. H 2 O) - 4 ΔG 0 298. NH з После подстановки табличных значений ΔG 0 298 .обР получаем: ΔG 0 298 = (4 (86,69) + 6 (-228, 76)) - 4 (-16,64) = - 959.24 кДж. По полученному результату видно, что так же, как и в примере 4.1, в стандартных условиях рассматриваемая реакция может протекать самопроизвольно

По формуле (4.1) можно определить температурный диапазон самопроизвольного протека-ния реакции. Так как условием самопроизвольного протекания реакции является отрицательность ΔG (ΔG<0), определение области температур, в которой реакция может протекать самопроизвольно, сво-дится к решению неравенства (ΔH-TΔS)

Пример 4.3. Определение температурной области самопроизвольного протекания реакции, вы-раженной уравнением: СаСО 3 (т) = СаО(т) + СO 2 (г).

Находим ΔH u ΔS. ΔH ≈ ΔH° 298 = (ΔН 0 298 , СаО + ΔН° 298, CO 2) - ΔН° 298 , CaCO 3 = (-635,1 + (-393,51)) - (-1206) = 177,39кДж = 177390 Дж; ΔS ≈ ΔS 0 298 = (S 0 298 , СаО + S 0 298.С02) - S 0 298 ,СаСОз = (39,7 + 213,6)- 92,9 = 160,4 Дж/К. Подставляем значения ΔН и ΔS в неравенство и решаем его относительно Т: 177390 - Т*160,4<0, или 177390<Т*160,4, или Т>1106. Т.е. при всех температурах, больших 1106К, бу-дет обеспечиваться отрицательность ΔG и, следовательно, в данном температурном диапазоне бу-дет возможным самопроизвольное протекание рассматриваемой реакции.

Статьи по теме: