Энергия и ее виды. Энергия: потенциальная и кинетическая энергия

Лекция 2. Виды энергии. Получение, преобразование и использование энергии

ТЕМА 2. ВИДЫ ЭНЕРГИИ. ПОЛУЧЕНИЕ, ПРЕОБРАЗОВАНИЕ И ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

Основные понятия:

энергия; кинетическая и потенциальная энергия; виды энергии; энергетика; энергосистема; электроэнергетическая система; потребители энергии; традиционная и нетрадиционная энергетика; графики нагрузки; энергопотребление на душу населения; энергоемкость экономики; показатель энергоэкономического уровня производства .

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность ) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .

Согласно представлениям физической науки, энергия – это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.

Если энергия – результат изменения состояния движения материальных точек или тел, то она называется кинетической ; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.

Если энергия – результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной ; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия – проявляется при взаимодействии, движении отдельных тел или частиц.

К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах – транспортных и технологических.

Тепловая энергия – энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия энергия движущихся по электрической цепи электронов (электрического тока).



Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).

Химическая энергия это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.

Магнитная энергия – энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой.

Электромагнитная энергия – это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.

Таким образом, электромагнитная энергия – это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия – энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии – атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия – энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли – энергия силы тяжести.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую, энергию атомных взаимодействий – химическую, энергию излучения – электромагнитную, энергию, заключенную в ядрах атомов – ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.

В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен
1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг·м=9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию. На рис. 2.1 представлена схема классификации первичной энергии.

Рис. 2.1. Классификация первичной энергии

При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.

К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).

Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).

Преимущества электрической энергии. Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.

Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет
(рис. 2.2).

Электрическая энергия – более универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.

Электрификация – основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии – электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями. Электричество – очень удобный для применения и экономичный вид энергии.

Рис. 2.2. Динамика потребления электрической энергии

Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и в повседневной жизни человека:

1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.

2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.

3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.

способность вещи совершить работу. Можно сказать - свойство системы, заключающееся в способности совершить внутри себя дистемы, заключающееся в способности совершить внутри себя движение - работу.

Ассоциативный блок.

Вопрос - что такое работа и что такое энтропия?

Отличное определение

Неполное определение ↓

ЭНЕРГИЯ

универсальная количественная мера движения и взаимодействия всех видов энергии (по-гречески energcia - действие). Основным свойством энергии является ее сохранение при любых превращениях. В механике закон сохранения энергии (в первоначальной терминологии - живых сил) был открыт не сразу. Его частные случаи использовали Галилей и Лейбниц, а в общей форме он был обоснован Лейбницем. В придании этому закону универсального характера решающее значение сыграли исследования процессов превращения теплоты в работу и обратно и установление механического эквивалента теплоты. Эти исследования в середине XIX в. выполнили Р. Майер, Дж. Джоуль и Г. Гельмгольц. В термодинамике закон сохранения энергии получил название ее первого начала.

В соответствии с разными разновидностями движения рассматривают различные формы энергии: механическую, внутреннюю, электромагнитную, химическую, ядерную и др. Энергия системы определяется параметрами, характеризующими ее состояние. В технике, в частности, различают кинетическую энергию и потенциальную mgh, где m - масса тела, v - его скорость, h - высота подъема, g - ускорение силы тяжести.

Одним из следствий теории относительности является закон эквивалентности массы и энергии Е = тс2 , где Е - энергия, а с - скорость света. Очевидно, этот закон следует рассматривать как обобщение закона сохранения энергии.

ЭНЕРГИЯ

греч. energeia - деятельность) - общая мера различных форм материального движения. Термин “Э.” был введен англ. ученым Т. Юнгом в 1807 и понимался им как произведение массы движущегося тела на квадрат его скорости. Качественно различные физические формы движения материи способны превращаться друг в друга, и этот процесс превращения контролируется строго определенными количественными эквивалентами, что и позволяет выделить общую меру движения - Э. как таковую. Э. в качестве меры движения проявляется в различных видах. Это находит свое выражение в системе физических теории, где вводятся понятия механической, тепловой, электромагнитной, ядерной, гравитационной и т. п. Э. В свою очередь, в механике Э. подразделяется на потенциальную и кинетическую, в термодинамике - на связанную и свободную, в определенных задачах осуществляется подразделение на внешнюю и внутреннюю Э. системы. Каждый из видов Э. существенно характеризует соответствующую физическую форму движения со стороны возможности ее превращения в любую др. форму движения при количественном сохранении самого движения. В нек-рых философских концепциях Э. трактуется как особого рода субстанция или как некая внутренняя активность, переходящая от тела к телу или от одного живого существа к другому. Такое чрезмерное расширение области применимости физического понятия приводит к теоретически не обоснованным построениям. Вся история материально-духовной культуры совр. цивилизации связана с освоением и развитием различных форм использования Э.: невозобновляемых (уголь, нефть, природный газ) и возобновляемых (древесина, гидроэнергетика и др.) ресурсов Э. Перспективы энергетики будущего связываются с широким использованием ядерных источников Э., сочетанием традиционных энергетических ресурсов, расширением применения Э. солнца, ветра и т. п. При этом важное значение придается предотвращению негативных последствий влияния энергетики на окружающую среду. Выброс тепла, рост концентрации углекислого газа в атмосфере и др. могут привести к изменениям метеорологических и гидрологических параметров биосферы (таяние арктических льдов, смещение климатических зон и т. д.). Однако по мере развития совр. форм энергетического обеспечения, более рационального использования Э. масштабы выбросов будут сокращаться, а экологическая ситуация стабилизироваться. Переход к новым энергетическим концепциям предполагает не только соответствующее развитие науки, техники и технологии, но и расширение международного сотрудничества в решении задач, связанных с энергетическим обеспечением человечества.

Отличное определение

Неполное определение ↓

Понятие энергии настолько вошло в наш обыденный лексикон, что мы, не задумываясь, применяем этот термин по поводу и без повода. Нам кажется, что это существует в реальности как отдельная вещь или субстанция, как например, воздух или вода. В обыденной жизни часто жалуемся на то, что не хватает энергии, чтобы поднять что-либо или копать землю в саду, или если в доме нет света, говорим, что нет электрической энергии. Наши машины используют силу давления сгорающей углеводородной смеси в двигателях внутреннего сгорания или напора струи высокоскоростного истечения газа в реактивных двигателях. Для кипячения воды на газовой плите применяем тепловую энергию, выделяющуюся при химических реакциях горения. Также часто используем термины атомная энергия, ветровая энергия, энергия падающей воды и др. В различных областях науки в зависимости от области исследования применяются термины: гравитационная энергия, внутренняя энергия, химическая энергия, биоэнергия и т.д.

Энергия (от греч. energeia – действие, деятельность) – общая количественная мера движения и мера перехода движения материи из одних форм в другие (взаимодействия всех видов материи).

Не следует понимать движение примитивно. Движение – это изменение во времени состояния того, о движении чего идет речь: увядание цветка, капание капли и изменение всего остального во Вселенной.

Энергия является мерой способности физической системы совершить работу, поэтому количественно энергия и работа выражаются в одних единицах.

С фундаментальной точки зрения энергия представляет собой интеграл движения (то есть сохраняющуюся при движении величину), связанный, согласно теореме Нетер, с однородностью времени. Таким образом, введение понятия энергии как физической величины целесообразно только в том случае, если рассматриваемая физическая система однородна во времени.

Сам термин «энергия» появился лишь в начале XIX века и был введен в механику английским физиком Т.Юнгом, под которой он понимал величину пропорциональную механической работе . Чуть позже его соотечественник Д.Джоуль установил первую эквивалентность, измерив механическую работу, которую необходимо затратить, чтобы поднять температуру данного количества воды на один градус. Также Джоуль обнаружил, что связи, между выделением или поглощением тепла, в электрических и магнитных явлениях, в химических реакциях, а также биологическими объектами, носят характер «превращения». Он же определил общий эквивалент для физико-химических превращений, что позволило измерить сохраняющуюся величину. Впоследствии эта величина стала известна как «энергия». А немецкий ученый Г.Гельмгольц сформулировал это как закона сохранения энергии. В этом также большую роль сыграли работы его соотечественника Ю.Майера.


Энергия первоначально была в физике абстрактной идеей, и стала популярной благодаря закону сохранения энергии, согласно которому она не возникает из ничего и не уничтожается . Это понятие сильно упрощает описание широкого круга физических процессов и охватывает огромное количество экспериментальных фактов, и не будь понятия энергии, пришлось бы рассматривать эти факты каждый по отдельности.

Различают следующие виды энергии :

  • потенциальная энергия (или, в более общем случае, энергия взаимодействия тел или их частей между собой или с внешними полями)
  • кинетическая энергия (энергия движения)
  • энергия диссипации

Энергия диссипации (лат. dissipatio, рассеяние) – переход части энергии упорядоченных процессов (кинетической энергии движущегося тела, энергии электрического тока и т.п.) в энергию неупорядоченных процессов, в конечном счете – в теплоту. Системы, в которых энергия упорядоченного движения с течением времени убывает за счет диссипации, переходя в другие виды энергии, например в теплоту или излучение, называются диссипативными. Для учета процессов диссипации энергии в таких системах при определенных условиях может быть введена диссипативная функция. Если диссипация энергии происходит в замкнутой системе, то энтропия системы возрастает. Диссипация энергии в открытых системах, обусловленная процессами уноса энергии из системы, например в виде излучения, может приводить к уменьшению энтропии рассматриваемой системы при увеличении полной энергии системы и окружающей среды. Это, в частности, обеспечивает важную роль процессов диссипации энергии в уменьшении удельной энтропии вещества на стадиях образования галактик и звезд в модели горячей Вселенной.

Отметим также, что энергия диссипации связана не просто с энергетическим противодействием, а с качественным изменением энергии. К слову, применяемый иногда термин «диссипативные потери энергии» некорректен, ибо энергия теряться не может. Точнее было бы сказать о диссипативных потерях энергии упорядоченных форм движения. Вместо термина «энергия диссипации» (в переводе на русский язык – энергия рассеяния) в некоторых научных работах применяют термин «энергия деградации» (в переводе на русский язык – энергия вырождения). Но и это не точно, вырождается не энергия, а способность системы производить механическую работу.

К числу противодействий системы внешнему энергетическому воздействию следует добавить возможное противодействие физического поля, связанное с перемещением системы в этом поле или с ее возможным поворотом относительно силовых линий поля. Это противодействие является удельным изменением еще одного вида энергии, называемого в физике потенциальной энергией в физическом поле или сокращенно потенциальной энергией положения.

Поскольку определяющее уравнение для расчета потенциальной энергии положения иное, чем для расчета потенциальной энергии, связанной с противодействием жесткости, то речь идет о двух разных видах энергии. Поэтому вид энергии, связанный с противодействием жесткости, будем называть потенциальной энергией деформации. Этот вид потенциальной энергии, в отличие от предыдущего, связан с внутренним силовым полем (полем упругих сил).

Полная энергия системы является суммой внешней и внутренней энергии системы. Внешняя энергия системы состоит из кинетической и потенциальной энергий системы как целого. Внутренняя энергия системы – это энергия системы, зависящая только от ее внутреннего состояния и не включающая в себя виды энергии системы как целого.

В соответствии с различными формами движения материи, следует рассматривать и различные формы энергии :

  • механическую
  • гидравлическую
  • тепловую
  • электромагнитную
  • ядерную и т.д.

Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную и ядерную энергии (также может быть разделена на энергию слабого и сильного взаимодействий).

Термодинамика рассматривает внутреннюю энергию и иные термодинамические потенциалы.

В химии рассматриваются такие величины как энергия связи и энтальпия, имеющие размерность энергии, отнесенной к количеству вещества (химический потенциал).

Механическая энергия характеризует способность тела совершать работу, характеризует движение и взаимодействие тел, является физической величиной определяемая состоянием системы тел – взаимным расположением и их скоростями. Находясь в том или ином механическом состоянии, система тел обладает определенной энергией, вследствие взаимодействия тел с другими телами и взаимодействием их частей, либо своего движения. Изменение энергии при переходе из одного состояния в другое равна работе внешних сил. Полная механическая энергия системы равна сумме кинетической и потенциальной энергий.

Кинетической энергией называют энергию, которой тело обладает вследствие своего движения. Она равна половине произведения массы тела на квадрат его скорости.

Кинетической энергией обладают все движущиеся тела. Например, текущая вода, ветер, вращающееся колесо, движущийся электрон и т.д.

Физический смысл кинетической энергии заключается в том, что эта энергия равна работе, которую надо совершить.

Потенциальной энергией называют энергию, которая определяет взаимным расположением тел или частей одного тела. Потенциальная энергия - энергия взаимодействия тел. Такой энергией обладают, например, поднятый камень на какую-нибудь высоту над Землей, сжатая или растянутая пружина и др.

Взаимодействующие тела могут обладать одновременно и кинетической и потенциальной энергией, то есть полной энергией.

Летящий мяч, например, обладает и кинетической и потенциальной энергией, так как кроме движения вперед он взаимодействует с Землей силой всемирного тяготения. В момент удара о Землю механическая энергия мяча частично переходит во внутреннюю энергию и т.д.

Если от механики перейти к термодинамике, то здесь рассматривается, в основном, внутренняя энергия системы.

Отдел физической науки – термодинамика – рассматривает все явления с точки зрения взаимообмена и преобразования энергии. Совокупность физических тел, которые взаимодействуют между собой и внешней средой, обмениваясь с ними энергией и веществом, является термодинамической системой. Правда, термодинамика, для облегчения изучения, рассматривает изолированные системы, которые не взаимодействуют с окружающей средой. То есть извне не поступает ни энергии, ни вещества, также энергия и вещества самой системы не передаются наружу.

Но в отличие от такой идеализированной системы, реальные системы, в той или иной мере, обмениваются с окружающей средой и энергией и веществом, и поэтому можно сказать, что в природе не существуют совершенно закрытых систем. Тем не менее, некоторые закономерности идеализированной системы вполне применимы и к реальным системам. Одна из таких закономерностей - это тепловое равновесие. Если долгое время внешние условия остаются неизменными, то любая термодинамическая система рано или поздно самопроизвольно переходит в состояние теплового равновесия.

При тепловом равновесии все макроскопические параметры системы могут оставаться сколь угодно долго неизменными. В таком состоянии не происходит теплообмен с окружающей средой, не изменяется объем, и давление газа, отсутствуют взаимное превращение жидкостей, газов и твердых тел и т.д. При этом микроскопические процессы внутри тела (движение и взаимодействия частиц) не прекращаются. Между частицами тела (системы) происходит обмен энергией: частицы с большой энергией передают энергию частицам с меньшей энергией. Идет внутреннее выравнивание температур.

Стоит только измениться внешним условиям, так сразу нарушается равновесие системы, и начинается движение, пока система опять не адаптируется к новым условиям. Поэтому можно сказать, что у системы может быть множество состояний теплового равновесия, каждому из которых соответствует определенная температура. Например, вода при температуре выше 100оС находится в виде пара, если постепенно понижать температуру, скажем, до 15оС, она превратится в жидкость, и при этом будут изменяться многие ее свойства. Если поддержать некоторое время эту температуру, то наступит тепловое равновесие. Это ее относительно равновесное состояние в этих конкретных условиях.

Если дальше изменить температуру, скажем, до –10оС, то вода превратится в лед, и опять изменятся почти все физические параметры и свойства: объем, плотность, электрические и магнитные свойства и др. Таким образом, получается, что любая система может обладать множеством подвижных равновесных состояний в зависимости от внутренних и, в особенности, от внешних условий.

В химической науке хорошо известен принцип Ле Шателье, принцип подвижного равновесия, который гласит: если на равновесную систему производить внешнее воздействие, то положение равновесия смещается в направлении ослабления эффекта этого воздействия.

Это проявляется, например, так: при повышении внешней температуры динамическое равновесие химической системы смещается в сторону эндотермических (поглощение теплоты) процессов. Если нагреть алюминий до температуры 700оС, то вследствие поглощения тепловой энергии, у него увеличится внутренняя энергия, и он перейдет в жидкое состояние.

При понижении температуры равновесие процессов смещается в сторону экзотермических реакции (выделение тепловой энергии). Согласно этому, если жидкий алюминий поместить в условия низкой температуры (или дать охладится ниже 600оС), то он будет отдавать тепло окружающей среде, внутренняя энергия уменьшится, и он перейдет в твердое состояние.

Увеличение давления смещает химическое равновесие в направлении процессов в сторону уменьшения объемов получаемых продуктов, а уменьшение давления, наоборот, в сторону образования веществ с большими объемами выходных продуктов.

Таким образом, само равновесие оказывается весьма подвижным и зависит от многих условий: как от внешних, так и внутренних. Но опыт показывает, что все-таки зависимость от внешних условий больше. Система постоянно подлаживается, в первую очередь, к изменениям внешней среды. И это, соответственно, требует от системы внутренней «перестройки»: то превратиться в пар, то в жидкость, то перейти в твердую фазу. При этом обычно энергия либо выделяется, либо поглощается.

Выделение энергий, поглощение энергий, энергообмен во всяких его проявлениях изучается термодинамикой. Здесь наиболее известны два закона. Первый из них гласит: изменение внутренней энергии системы при переходе из одного состояния в другое равно сумме количества теплоты, сообщенного системе, и работы внешних сил, совершенной над системой.

Второй закон постулирует невозможность передачи тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах. Если перевести на реальный, действительный мир, это указывает на необратимости процессов в природе. Или по-другому, используя понятие, введенное в термодинамику для определения меры необратимости рассеяния энергии, второй закон еще называют законом возрастания энтропии.

Если сейчас перейти к электродинамике, добавляются электрические и магнитные энергии. Электрические и магнитные поля характеризуются энергетическими и силовыми характеристиками. Если разность потенциалов в различных точках поля определяют энергетическую характеристику поля, то сила, действующая на пробный заряд, помещенный в это поле, определяет силовую характеристику, которая именуется напряжением поля. В большей части все зависит от разности потенциалов: чем больше разность потенциалов, тем больше энергии и силы, действующие на тела, находящиеся в этом поле. Также чем больше разность потенциалов на концах проводника, тем выше сила тока.

Виды энергии могут переходить друг в друга, при этом оставаясь принадлежащими одной и той же форме энергии. Переход разных видов энергии друг в друга является следствием перераспределения значений этих видов энергии внутри одной и той же формы движения. При этом не исключается перенос любого вида энергии данной формы движения в любой вид энергии другой формы движения.

Самые общие зависимости образуют самую общую, единую теорию. Так как вещество (твердое, жидкое, газообразное, плазменное), по сути – это разные формы энергии, то получаем единую теорию всех полей (векторов, определяющих направленность воздействия данного вида энергии), существующих в природе. Однако общие зависимости пока еще не выявлены. Поэтому единой теории поля еще нет.

Итак, единой мерой различных форм движения служит физическая величина, называемая энергией. Движение является неотъемлемым свойством материи. Поэтому всякое, тело обладает энергией или, как часто говорят, запасом энергии, являющейся мерой его движения.

Различных форм движения много, но все они характеризуются некоей общей способностью воздействовать на окружающее с некоторой силой, пропорциональной величине их энергии. На то окружающее, на которое способна воздействовать энергия, соответствующая данной форме движения. При этом величина первоначальной энергии понижается, зато появляется новое движение, обладающее уже своей энергией. Так механическая энергия преобразуется в тепловую, тепловая – в химическую и электромагнитную (тепловое излучение), электромагнитная может опять стать механической (давление света). Гравитационная энергия заставляет тело падать и при ударе эта энергия переходит в тепловую и электромагнитную. То есть гравитационная, электромагнитная, механическая, тепловая, химическая энергии могут переходить друг в друга в виде изменения движения, позволяя количественно и качественно записать зависимости этих превращений.

Ясно, что просто понятие «энергия» не говорит ничего: смысл появляется только когда речь идет об определенной форме движения и соответствующей ей величине энергии.

Надо сказать, что понятие энергии, как основы всего, что существует во Вселенной, довольно не просто и требует понимания всех ее видов, от квантово-волновой, до форм, представленных в виде вещества: частиц, атомов, молекул, в контексте механизмов перехода ее из одних форм в другие. Без отнесения к определенной форме движения энергия полностью лишена смысла и, никто не способен придать ей какой-либо смысл.

Ученым трудно объяснить, что такое энергия. Это не является веществом или объектом, к которому можно прикоснуться или удерживать. Но вещества и объекты обладают энергией.

Полезное определение заключается в том, что энергия — это то, что необходимо для того, чтобы все произошло. Она может заставить вещи двигаться или меняться и делает что-то!

Различные формы

Все, что мы делаем, требует энергии даже для сна! В таблице ниже показано количество необходимое для различных видов деятельности.

Энергия, вовлеченная в повседневную деятельность:

Сохранение энергии

Хотя энергия может изменить свою форму, она не может просто исчезнуть. Если проследить источник то обнаружится, что она просто не появляется из ниоткуда.

Эти открытия привели ученых к утверждению закона об энергии.

Первая часть гласит, что энергия должна откуда-то поступать. Она никогда не создается из ничего, но может изменяться из одной формы в другую, но общее количество остается неизменным. Энергетические цепи обычно начинаются с некоторой формы потенциальной энергии. Если проследить множество энергетических цепочек, то можно обнаружить, что она исходит от ядерных реакций внутри Солнца, которые преобразуют энергию, хранящуюся в атомных ядрах в тепловую и лучистую.

  • Согласно Закону сохранения: вход = выходу
  • Это уравнение может быть изменено на: потребление = полезное + отходы

Конструкторы обеспокоены тем, чтобы сделать приборы, которые производят максимальный коэффициент полезного действия.

  • Это измеряется энергоэффективностью: энергоэффективность % = полезная энергия x 100/потребляемая

Человеческий организм не очень эффективен в преобразовании энергии. Спортсмен использует до 40000 джоулей химической (пищевой) при спринте на 100 м. Только 8000 из этого преобразуется в кинетическую энергию бега. Остальное тратится как тепло!

Количество энергии, преобразуемой машиной каждую секунду, называется мощностью машины. Мощность измеряется в ваттах (1 ватт равен 1 джоулю энергии, преобразуемой в каждую секунду).

Преобразование энергии

Энергия может передаваться от одного объекта к другому. Если вы касаетесь горячего объекта, тепло передается на ваши пальцы. Передача не влечет за собой изменения в типе энергии.

Преобразования или изменения происходят вокруг нас все время. При преобразовании энергия изменяется от одного типа к другому или на несколько различных типов. Электрическая лампочка преобразует электрическую в световую и инфракрасную.

Происходит преобразование энергии:

В трансформации важно определить затраты и выход. Иногда передачи и преобразования энергии происходят один за другим. Это называется энергетической цепью.

Например, преобразование энергии в фонарике:

  • Батареи преобразовывают химическую потенциальную в электрическую. Лампочка изменяет электрическую энергию в тепловую и световую.
  • Энергетическая цепь записывается как: химическая потенциальная — — — — > электрическая — — — — > тепловая и световая

Уравнения преобразования энергии

Во время преобразования энергия обычно преобразуется в более чем одну форму. Слово уравнение может быть использовано, чтобы показать изменения энергии, которые происходят.

Например, преобразование энергии в тостере:

  • Тостер изменяет электрическую энергию в энергию тепла и света.
  • Ввод — электрическая, вывод -тепловая и световая энергия.

Уравнение преобразования энергии тостера:

  • Электрическая — — — — — > тепловая + световая

Устройство, преобразующее энергию из одной формы в другую, называется машиной или преобразователем энергии.

Измерение энергии

Научной единицей энергии является джоуль. Это названо в честь британского ученого по имени Джеймс Джоуль. Один джоуль — это очень небольшое количество, поэтому ученые используют килоджоули (кДж).

Если поднять объект на 1 метр весом 1 кг, то объект получит 1 джоуль гравитационной энергии.

Если нагреть 1 мл воды на 1 градус С, то вода получит 4,2 джоулей тепловой энергии.

Энергия в пище

Все, что вы делаете каждый день, даже сон, требует энергии. Различные виды деятельности требуют разного количества.

Сколько энергии нужно вашему организму каждый день:

Мужчина или женщина, молодые или старые, активные или нет, люди получают ресурсы, в которых они нуждаются каждый день от еды, которую они едят. Эта пища является формой химической потенциальной энергии. Когда еда расходуется в клетках тела во время дыхания, химическая потенциальная энергия выпускается. Различные продукты выделяют разное количество ресурсов.

Ежедневные энергетические потребности женщин и мужчин в(килоджоулей)

Держать себя здоровым без избыточного веса — — — — > сбалансировать потребление с расходом

Некоторые виды пищи обеспечивают больше энергии, чем другие. Жиры дают вдвое больше, чем углеводы. В виду того что жир дает больше чем другие типы еды, можно подумать что еда всегда хороша для нас. ЭТО НЕ ТАК! Организм не может использовать так много еды одновременно. Все что необходимо он использует, а лишнее хранит как жир. Это может привести к ожирению и другим проблемам со здоровьем.

Когда вы активны, организм сжигает много энергии. Когда вы смотрите телевизор или играете на компьютере, организм сжигает гораздо меньше.

Большее количество энергии, которую наши тела получают от пищи, преобразуется в тепловую в результате дыхания. Это использовано для того чтобы держать наши тела на определенной температуре постоянно (37 градусах C). Это важно, если химические реакции, которые происходят в клетках должны работать эффективно.

Чтобы узнать, сколько энергии хранится в пище, вы можете превратить ее в тепло и измерить, что может сделать это тепло.

Альтернативные источники

Большая часть энергии в мире используется в виде ископаемого топлива. Эти виды топлива, такие как уголь, нефть и природный газ, поступают от Солнца. Солнечная энергия хранится в растениях и животных, которые вымерли миллионы лет назад.

Сжигание ископаемых видов топлива является единственным способом высвобождения накопленных в них ресурсов. Проблема с ископаемыми видами топлива заключается в том, что они загрязняют окружающую среду, и они занимают очень много времени. Это невозобновляемые источники энергии. После того, как ископаемые виды топлива были использованы, они ушли навсегда.

Возобновляемые источники энергии заканчиваются. Люди во всем мире ищут альтернативные источники, которые являются экологически чистыми, безопасными и возобновляемыми. Некоторые были использованы в течение многих лет. Некоторые все еще находятся на экспериментальной стадии. Большинство из них используются для производства электрической энергии, но некоторые используются в их первоначальном виде.

Альтернативные (возобновляемые) источники энергии включают:

Солнечная

Солнечная энергия поступает от солнца в виде электромагнитных волн. Количество Земли получает в год более чем достаточно, чтобы обеспечить все мировые потребности на этот год.

Ветра

Движение воздуха (ветер) является результатом неравномерного нагрева земной поверхности солнцем. Ветряные турбины превращаются в ветер и вырабатывают электричество.

Гидроэлектрическая

Когда вода, накопленная высоко за плотиной, стекает по трубам в электростанцию, ее гравитационная потенциальная энергия преобразуется в кинетическую, которая превращает турбины, генерирующие электричество.

Биомасса

Это органический материал, который преобразуется в том числе и . Древесина — это форма биомассы. Сжигание древесной щепы производит газ, который сжигается, чтобы высвободить ресурсы, которые могут быть использованы для обеспечения отопления или использоваться для производства электроэнергии.

Приливная

Приливы вызваны притяжением Луны. Плотина через лиман может удерживать воду, а затем использовать ее для выработки электроэнергии.

Биогаз

Разлагаемые животные, отходы и нечистоты производят лэндфилл-газ. Когда лэндфилл-газ совмещается с углекислым газом производится метан. Процесс происходит в закрытом контейнере, называемом метантенка. В Индии и Китае этот способ используют для получения топлива для приготовления пищи.

Волновая

Волны вызваны ветром, дующим через море. Большие поплавки которые двигают вверх и вниз с волнами теперь используются для генерации электричества.

Водород

Водород используется в топливных элементах. Его можно совместить с кислородом для того чтобы произвести электрический ток. Он горит легко выпуская большое количество тепловой энергии.

В текстах, публикуемых на этом сайте, часто встречаются различные термины, которые являются названиями физических величин. Многое мы изучали еще в школьном курсе физике, но знания имеют свойство забываться без постоянного употребления. В серии заметок, объединенных под общим заголовком «Вспоминаем физику» (можно было бы назвать «Снова в школу») мы постараемся напомнить вам, что означают основные термины, какие физические величины за этими терминами скрываются, как они связаны между собой, в каких величинах они измеряются. В общем, дать те основы, которые нужны для понимания публикуемых материалов.

Сайт нас в целом посвящен методам и технологиям получения энергии (конкретно, из возобновляемых источников). Энергия нужна людям для отопления и освещения собственных жилищ, для того, чтобы приводить в движение различные механизмы, которые совершают полезную для людей работу. То есть нам нужно получить в конечном итоге один из трех видов энергии — тепловую, механическую и энергию света. Как будет сказано ниже, в физике различают еще несколько видов энергии, но для нас важны в первую очередь эти три вида. Закончу с предисловиями и приведу те определения энергии, которые приняты в физике.

Работа и энергия

Еще из школьного курса физики (а школу я окончил 50 лет назад) я помню утверждение «Энергия является мерой способности физической системы совершить работу». Википедия дает менее понятное определение, утверждая , что

«Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.»

Энергия является скалярной величиной, для измерения которой применяются несколько разных единиц. Нам наиболее интересны джоуль и киловатт-час.

Джо́уль (русское обозначение: Дж; международное: J) - единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному ньютону, на расстояние одного метра в направлении действия силы. В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт для поддержания силы тока в 1 ампер.

Впрочем, мы не будем углубляться в основы физики, выясняя, что такое сила и что такое один ньютон, просто примем понятие «энергия» за основу и запомним, что некое количество джоулей характеризует энергию, работу и количество теплоты. Еще одной величиной, с помощью которой измеряют количество энергии, является киловатт-час.

Килова́тт-час (кВт⋅ч) - внесистемная единица измерения количества произведенной или потреблённой энергии, а также выполненной работы. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике.

Следует заметить, что правильно писать именно «кВт⋅ч» (мощность, умноженная на время). Написание «кВт/ч» (киловатт в час), часто употребляемое во многих СМИ и даже иногда в официальных документах, неправильно. Такое обозначение соответствует изменению мощности в единицу времени (что обычно никого не интересует), но никак не количеству энергии. Столь же распространённая ошибка - использовать «киловатт» (единицу мощности) вместо «киловатт-час».

В последующих статьях мы будем использовать джоуль и киловатт-час как единицы для оценки количества энергии или работы, имея в виду, что один киловатт-час равен 3,6·10 6 джоулей.

С точки зрения интересующих нас тем именно свойство энергии совершать работу является основополагающим. Мы не будем выяснять, как физика трактует понятие «работа», будем считать, что это понятие является первоначальным и не определяемым. Только еще раз подчеркнем, что количественно энергия и работа выражаются в одних единицах.

В зависимости от вида энергии или работы величина энергии рассчитывается разными способами:

Формы и виды энергии

Поскольку энергия, как сказано выше, является только мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие, различные формы энергии выделяются в соответствии с различными формами движения материи. Таким образом, в зависимости от уровня проявления, мож­но выделить следующие формы энергии:

  • энергия макромира - гравитационная или энергия притяжения тел,
  • энергия взаимодействия тел - механическая,
  • энергия молекулярных взаимодействий - тепловая,
  • энергия атомных взаимодей­ствий - химическая,
  • энергия излучения - электромагнит­ная,
  • энергия, заключенную в ядрах атомов, - ядерная.

Гравитационная энергия - энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на опреде­ленную высоту над поверхностью Земли - энергия силы тя­жести. Таким образом, энергию, запасенную в водохранилищах гидроэлектростанций, можно отнести к гравитационной энергии.

Механическая энергия - проявляется при взаимодей­ствии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и техно­логических.

Тепловая энергия - энергия неупорядоченного (хаотичес­кого) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопле­ния, проведения многочисленных технологических процес­сов (нагревания, плавления, сушки, выпаривания, перегон­ки и т. д.).

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Электромагнитная энергия - это энергия, порождаемая взаимодействием электрического и магнитного по­лей. Ее подразделяют на электрическую и магнитную энергии. Электрическая энергия - энергия движущихся по элек­трической цепи электронов (электрического тока).

Электромагнитная энергия проявляется также в виде электромагнит­ных волн, то есть в виде излучения, включающего видимый свет, инфракрасные, ультрафио­летовые, рентгеновские лучи и радиоволны. Таким образом, один из видов электромагнитной энергии - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия - энергия, локализованная в ядрах ато­мов так называемых радиоактивных веществ. Она высвобож­дается при делении тяжелых ядер (ядерная реакция) или син­тезе легких ядер (термоядерная реакция).

В эту классификацию несколько не укладываются известные нам со школы понятия потенциальной и кинетической энергии. Современная физика считает , что понятия кинетической и потенциальной энергий (а также энергии диссипации) это не формы, а виды энергии :

Кинетическая энергия — энергия, которой обладают тела вследствие своего движения. Более строго , кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением. Когда тело не движется, кинетическая энергия равна нулю.

Потенциальная энергия — энергия, обусловленная взаимодействием различных тел или частей одного и того же тела. Потенциальная энергия всегда определяется положением тела относительно некоторого источника силы (силового поля).

Энергия диссипации (то есть рассеяния) — переход части энергии упорядоченных процессов в энергию неупорядоченных процессов, в конечном счёте - в теплоту.

Дело в том, что каждая из перечисленных выше форм энергии может проявляться в виде потенциальной и кинетической энергии. То есть виды энергии должны трактоваться в обобщенном смысле, ибо они относятся к любой форме движения и, следовательно, к любой форме энергии. Например, имеется кинетическая электрическая энергия, и это не то же самое, что кинетическая механическая энергия. Это кинетическая энергия движения электронов, а не кинетическая энергия механического движения тела. Точно так же потенциальная электрическая энергия это не то же самое, что потенциальная механическая энергия. А химическая энергия складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами.

Вообще, насколько я понял при подготовке этого материала, пока не существует общепринятой классификации форм и видов энергии. Впрочем, возможно нам и не нужно до конца разбираться в этих физических понятиях. Важно только помнить, что энергия — это не какая-то реальная материальная субстанция, а только мера, предназначенная для оценки перемещения некоторых форм материи или преобразования одной формы материи в другую.

С понятием энергии и работы неразрывно связано понятие мощности.

Мо́щность - физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Мощность характеризует способность того или иного устройства совершать работу или производить энергию в течение определенного промежутка времени. Связь между мощностью, энергией и временем выражается следующим соотношением:

Киловатт-час (напомним, что это единица измерения энергии) равен количеству энергии, потребляемой (производимой) устройством мощностью один киловатт (единица мощности) в течение одного часа (единица времени) .

Отсюда и уже упомянутое выше равенство 1 кВт⋅ч = 1000 Вт ⋅ 3600 с = 3,6·10 6 Дж = 3,6 МДж.

Из трех рассмотренных на этой странице единиц именно мощность представляет для нас наибольший интерес, поскольку эта величина будет нам встречаться при рассмотрении и сравнении различных ветро- или гидро-генераторов и солнечных панелей. В этих случаях мощность характеризует способность этих устройств производить энергию. И наоборот, указание мощности на многих бытовых электроприборах характеризует потребление энергии этими приборами. Если мы хотим обеспечить некоторую совокупность бытовых приборов энергией, мы должны сопоставить суммарную потребляемую этими приборами мощность с суммарной мощностью, которую можем получить от производителей энергии.

Но подробнее о мощности мы поговорим в следующих статьях, посвященных конкретным видам энергии. И начнем с электрической энергии , рассмотрим, какими величинами характеризуется электричество и в каких единицах оно измеряется.

Статьи по теме: